K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
22 tháng 7 2020
P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)
P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)
22 tháng 7 2020
\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)
\(a^3+8b^3+1=6ab\)
\(\Rightarrow\left(a+2b\right)^3-6a^2b-12ab^2+1-6ab=0\)
\(\Rightarrow\left(a+2b\right)^3+1-6ab\left(a+2b+1\right)=0\)
\(\Rightarrow\left(a+2b+1\right)\left[\left(a+2b\right)^2-\left(a+2b\right)+1\right]-6ab\left(a+2b+1\right)=0\)
\(\Rightarrow\left(a+2b+1\right)\left(a^2+4ab+4b^2-a-2b+1-6ab\right)=0\)
\(\Rightarrow\left(a+2b+1\right)\left(a^2-2ab+4b^2-a-2b+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\a^2-2ab+4b^2-a-2b+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\\dfrac{1}{2}\left(a^2-2a\right)+\dfrac{1}{2}\left(a^2-4ab+4b^2\right)+2\left(b^2-b\right)+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\\dfrac{1}{2}\left(a^2-2a+1-1\right)+\dfrac{1}{2}\left(a^2-4ab+4b^2\right)+2\left(b^2-b+\dfrac{1}{4}-\dfrac{1}{4}\right)+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\\dfrac{1}{2}\left(a-1\right)^2-\dfrac{1}{2}+\dfrac{1}{2}\left(a-2b\right)^2+2\left(b-\dfrac{1}{2}\right)^2-\dfrac{1}{2}+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\\dfrac{1}{2}\left(a-1\right)^2+\dfrac{1}{2}\left(a-2b\right)^2+2\left(b-\dfrac{1}{2}\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a+2b+1=0\\a=1;b=\dfrac{1}{2}\end{matrix}\right.\)
*\(a+2b+1=0\Rightarrow a+2b=-1\)
*\(a=1;b=\dfrac{1}{2}\Rightarrow a+2b=1+2.\dfrac{1}{2}=2\)
.