K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2021

cho mik xin câu a b đi bạn

 

27 tháng 2 2022

a. -Xét △BEH và △CDH có: 

\(\widehat{BEH}=\widehat{CDH}=90^0\)

\(\widehat{BHE}=\widehat{CHD}\)(đối đỉnh)

\(\Rightarrow\)△BEH∼△CDH (g-g).

\(\Rightarrow\dfrac{BH}{CH}=\dfrac{EH}{DH}\).

-Xét △HED và △HBC có:

\(\widehat{EHD}=\widehat{BHC}\) (đối đỉnh)

\(\dfrac{BH}{CH}=\dfrac{EH}{DH}\left(cmt\right)\)

\(\Rightarrow\)△HED∼△HBC (c-g-c).

b. -Ta có: \(\widehat{AED}+\widehat{DEC}=90^0\) (kề phụ).

\(\widehat{DBC}+\widehat{DCB}=90^0\) (△DBC vuông tại D).

Mà \(\widehat{DEC}=\widehat{DBC}\)(△HED∼△HBC)

\(\Rightarrow\)\(\widehat{AED}=\widehat{DCB}\)

-Xét △AED và △ACB có:

\(\widehat{AED}=\widehat{ACB}\) (cmt)

\(\widehat{BAC}\) là góc chung.

\(\Rightarrow\)△AED∼△ACB (g-g).

 

27 tháng 2 2022

c. -Có: \(\widehat{EAC}=45^0\) (gt) ; △AEC vuông tại E (AB⊥CE tại E).

\(\Rightarrow\)△AEC vuông cân tại E.

\(\Rightarrow AE=AC\sqrt{2}\)

-Ta có: △AED∼△ACB (cmt)

\(\Rightarrow\dfrac{ED}{BC}=\dfrac{AE}{AC}=\dfrac{AC\sqrt{2}}{AC}=\sqrt{2}\)

\(\Rightarrow\dfrac{ED}{\sqrt{2}}=\sqrt{2}\)

\(\Rightarrow ED=2\)

 

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔABD∼ΔACE(g-g)

b) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có 

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔEHB∼ΔDHC(g-g)

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(BH\cdot HD=CH\cdot HE\)(đpcm)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc ADE=góc ABC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

=>ΔABD đồng dạng với ΔACE

b: ΔABD đồng dạng với ΔACE

=>AD/AE=AB/AC

=>AD/AB=AE/AC

=>ΔADE đồng dạng với ΔABC

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{BAD}\) chung

Do đó: ΔABD\(\sim\)ΔACE(g-g)

18 tháng 4 2015

ai biết thì chỉ giùm nha ok :)

 

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

\(\widehat{EAC}\) chung

Do đó: ΔABD\(\sim\)ΔACE(g-g)

b) Xét ΔHEB vuông tại E và ΔHDC vuông tại D có 

\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHEB\(\sim\)ΔHDC(g-g)

Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)

hay \(HE\cdot HC=HB\cdot HD\)