Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) phương trình đường thẳng có dạng y =ax+b*
đi qua A(-2;0) ta thay x=-2; y=0 vào * ta có : -2a+b=0 (1)
đi qua B (0;1) ta thay x=0; y=1 vào * ta co: b=1 (2)
giải hệ pt gồm hai pt (1) và (2) ta được a = 1/2; b=1 thay vào * ta có đường thẳng cần tìm là: y=1/2.x+1
các câu còn lại làm tương tự
a: Vì y=ax+b có hệ số góc là 2 nên a=2
hay y=2x+b
Thay x=1 và y=3 vào y=2x+b, ta được:
\(b+2\cdot1=3\)
hay b=1
b: Vì y=ax+b đi qua M(0;4) và N(-2;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b=4\\-2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\-2a=2-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\a=1\end{matrix}\right.\)
a: Vì y=ax+b có hệ số góc là 2 nên a=2
hay y=2x+b
Thay x=1 và y=3 vào y=2x+b, ta được:
\(b+2\cdot1=3\)
hay b=1
b: Vì y=ax+b đi qua M(0;4) và N(-2;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b=4\\-2a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\-2a=2-b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\a=1\end{matrix}\right.\)
a) Vì đồ thị hàm số y=ax+b vuông góc với đồ thị hàm số \(y=\dfrac{1}{3}x-1\) nên \(a\cdot\dfrac{1}{3}=-1\)
\(\Leftrightarrow a=-1:\dfrac{1}{3}=-1\cdot\dfrac{3}{1}=-3\)
Vậy: Hàm số có dạng y=-3x+b
Vì đồ thị hàm số y=-3x+b đi qua điểm A(1;2) nên
Thay x=1 và y=2 vào hàm số y=-3x+b, ta được:
\(-3\cdot1+b=2\)
\(\Leftrightarrow b-3=2\)
hay b=5
Vậy: Hàm số có dạng y=-3x+5
a) Đường thẳng ax + by = c đi qua M (0 ; -1) và N (3 ; 0) nên tọa độ của M và N nghiệm đúng phương trình đường thẳng
Điểm M: (a.0 + b(- 1) = c ⇔ - b = c
Điểm N: (a.3 + b.0 = c ⇔ 3a = c ⇔ a = c/3
Do đó đường thẳng phải tìm là (c/3)x - cy = c. Vì đường thẳng MN được xác định nên a, b không đồng thời bằng 0, suy ra (c ≠ 0
Vậy ta có phương trình đường thẳng là x – 3y = 3
b) Đường thẳng ax + by = c đi qua M (0 ; 3) và N (-1 ; 0) nên tọa độ của M và N nghiệm đúng phương trình đường thẳng
Điểm M: (a.0 + b.3 = c ⇔ b = {c/3}
Điểm N: (a(- 1) + b.0 ⇔ - a = c
Do đó đường thẳng phải tìm là: ( - cx + (c/3)y = c Vì đường thẳng MN được xác định nên a, b không đồng thời bằng 0, suy ra (c ≠ 0
Vậy ta có phương trình đường thẳng là: -3x + y = 3.
\(a,\) Gọi pt đường thẳng \(\left(d\right)\) là \(y=ax+b\)
Ta có \(\left(d\right)\) đi qua \(A\left(-3;0\right),B\left(0;2\right)\) nên \(\left\{{}\begin{matrix}0=-3a+b\\2=0a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}\\b=2\end{matrix}\right.\)
Vậy đths là \(\left(d\right):y=\dfrac{2}{3}x+2\)
\(b,\) Gọi pt đường thẳng \(\left(d\right)\) là \(y=ax+b\)
Ta có hệ pt \(\left\{{}\begin{matrix}1=0a+b\\0=-a+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)
Vậy đths là \(\left(d\right):y=x+1\)
a,a, Gọi pt đường thẳng (d)(d) là y=ax+by=ax+b
Ta có (d)(d) đi qua A(−3;0),B(0;2)A(−3;0),B(0;2) nên {0=−3a+b2=0a+b⇔⎧⎨⎩a=23b=2{0=−3a+b2=0a+b⇔{a=23b=2
Vậy đths là (d):y=23x+2(d):y=23x+2
b,b, Gọi pt đường thẳng (d)(d) là y=ax+by=ax+b
Ta có hệ pt {