Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x
a) Ta có: \(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow16x^2-\left(16x^2-40x+25\right)-15=0\)
\(\Leftrightarrow16x^2-16x^2+40x-25-15=0\)
\(\Leftrightarrow40x-40=0\)
\(\Leftrightarrow40x=40\)
hay x=1
Vậy: x=1
b) Ta có: \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1\right)-49=0\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)
\(\Leftrightarrow12x-36=0\)
\(\Leftrightarrow12x=36\)
hay x=3
Vậy: x=3
d) Ta có: \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow2\left(x^2+2x+1\right)-\left(x^2-9\right)-\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(\Leftrightarrow12x-5=0\)
\(\Leftrightarrow12x=5\)
hay \(x=\frac{5}{12}\)
Vậy: \(x=\frac{5}{12}\)
e) Ta có: \(\left(x-5\right)^2-x\left(x-4\right)=9\)
\(\Leftrightarrow x^2-10x+25-x^2+4x-9=0\)
\(\Leftrightarrow-6x+16=0\)
\(\Leftrightarrow6x=16\)
hay \(x=\frac{8}{3}\)
Vậy: \(x=\frac{8}{3}\)
f) Ta có: \(\left(x-5\right)^2-\left(x-4\right)\left(1-x\right)=0\)
\(\Leftrightarrow x^2-10x+25-\left(x-x^2-4+4x\right)=0\)
\(\Leftrightarrow x^2-10x+25-x+x^2+4-4x=0\)
\(\Leftrightarrow2x^2-15x+29=0\)
\(\Leftrightarrow2\left(x^2-\frac{15}{2}x+\frac{29}{2}\right)=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\frac{15}{4}+\frac{225}{16}+\frac{7}{16}=0\)
\(\Leftrightarrow\left(x-\frac{15}{4}\right)^2+\frac{7}{16}=0\)(vô lý)
Vậy: x∈∅
a) 16x^2 - (4x - 5)^2 = 15
<=> 16x^2 - 16x^2 + 40x - 25 = 15
<=> 40x = 40
<=> x = 1
b) (2x + 3)^2 - 4(x - 1)(x + 1) = 49
<=> 4x^2 + 12x + 9 - 4x^2 - 4x + 4x + 4 = 49
<=> 12x + 13 = 49
<=> 12x = 36
<=> x = 3
c) (2x + 1)(1 - 2x) + (1 - 2x)^2 = 18
<=> 1 - 4x^2 + 1 - 4x + 4x^2 = 18
<=> 2 - 4x = 18
<=> -4x = 16
<=> x = -4
d)2(x + 1)^2 - (x - 3)(x + 3) - (x - 4)^2 = 0
<=> 2x^2 + 4x + 2 - x^2 + 3^2 - x^2 + 8x - 16 = 0
<=> 12x - 5 = 0
<=> 12x = 5
<=> x = 5/12
e) (x - 5)^2 - x(x - 4) = 9
<=> x^2 - 10x + 25 - x^2 + 4x = 9
<=> -6x + 25 = 9
<=> -6x = 9 - 25
<=> -6x = -16
<=> x = -16/-6 = 8/3
f) (x - 5)^2 + (x - 4)(1 - x) = 0
<=> x^2 - 10x + 25 + x - x^2 - x - 4 + 4x = 0
<=> -5x + 21 = 0
<=> -5x = -21
<=> x = 21/5
a) (x + 6)(3x + 1) + x2 - 36 = 0
<=> 3x2 + x + 18x + 6 + x2 - 36 = 0
<=> 4x2 + 19x - 30 = 0
<=> 4x2 + 24x - 5x - 30 = 0
<=> 4x(x + 6) - 5(x + 6) = 0
<=> (x + 6)(4x - 5) = 0
<=> x + 6 = 0 hoặc 4x - 5 = 0
<=> x = -6 hoặc x = 5/4
Bài 1 mình đã làm xong rồi, anh em nào giúp mình bài 2 với!
Bài 3: Tìm x, biết:
a) \(16x^2-\left(4x-5\right)^2=15\)
\(\Leftrightarrow16x^2-16x^2+40x-25-15=0\)
\(\Leftrightarrow40x-40=0\)
\(\Leftrightarrow4x=40\)
\(\Leftrightarrow x=10\)
Vậy x = 10
b) \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)
\(\Leftrightarrow\left(2x+3\right)^2-4\left(x^2-1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)
\(\Leftrightarrow12x-36=0\)
\(\Leftrightarrow12x=36\)
\(\Leftrightarrow x=3\)
Vậy x = 3
c) \(\left(2x+1\right)\left(1-2x\right)+\left(1-2x\right)^2=18\)
\(\Leftrightarrow\left(1-2x\right)\left(2x+1+1-2x\right)=18\)
\(\Leftrightarrow2\left(1-2x\right)=18\)
\(\Leftrightarrow2-4x=18\)
\(\Leftrightarrow4x=-16\)
\(\Leftrightarrow x=-4\)
Vậy x =-4
d) \(2\left(x+1\right)^2-\left(x-3\right)\left(x+3\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow2x^2+4x+2-x^2+9-x^2+8x-16=0\)
\(\Leftrightarrow12x-5=0\)
\(\Leftrightarrow12x=5\)
\(\Leftrightarrow x=\frac{5}{12}\)
Vậy \(x=\frac{5}{12}\)
e) \(\left(x-5\right)^2-x\left(x-4\right)=9\)
\(\Leftrightarrow x^2-10x+25-x^2+4x=9\)
\(\Leftrightarrow25-6x=9\)
\(\Leftrightarrow6x=16\)
\(\Leftrightarrow x=\frac{8}{3}\)
Vậy \(x=\frac{8}{3}\)
f) \(\left(x-5\right)^2+\left(x-4\right)\left(1-x\right)=0\)
\(\Leftrightarrow x^2-10x+25+x-x^2-4+4x=0\)
\(\Leftrightarrow21-5x=0\)
\(\Leftrightarrow5x=21\)
\(\Leftrightarrow x=\frac{21}{5}\)
Vậy \(x=\frac{21}{5}\)
bài của bạn làm sai rồi :)