Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trên đoạn AC lấy H sao cho H là trung điểm của đoạn.
Lại có: E là trung điểm của AD nên EH là đường trung bình của tam giác ACD
Do đó CD = 2EH (1)
Gọi I là trung điểm của AM, K là trung điểm của AB
Ta có: EK là đường trung bình của tam giác ADB nên EK //DB
Suy ra góc EKI = 600. Hoàn toàn tương tự: góc FKB = 600
Do đó góc EKF = 600
Tương tự ta có góc HIE = 600
Xét hai tam giác HIE và FKE có:
HI = FK (cùng bằng 1 nửa AC)
góc HIE = góc EKE (=600)
EI = EK (cùng bằng 1 nửa DM)
Suy ra tam giác HIE = tam giác FKE (c.g.c)
Suy ra EF = EH (2)
Từ (1) và (2) suy ra EF = 1/2CD (đpcm)
Cách 1: *cách của Assassin_07*
Cách 2: Ta tạo ra đoạn thẳng bằng nửa CD, đó là PQ (P là trung điểm MC, Q là trung điểm MD). Để chứng minh EF=PQ, ta lấy K là trung điểm AB rồi chứng minh ∆EKF=∆QMP (c.g.c)
Do ∆ACM và ∆MDB đều => AC = AM = AC và MD = BD = MB. Nối M -> E; E -> F; F -> M
Xét ∆AMD và ∆CMB có:
+ AM = CM
+ góc AMD = góc CMB = 120º (kề bù với 2 góc 60º)
+ MD = MB
=> ∆AMD = ∆CMB(c.g.c) => AD = BC => AD/2 = BC/2 => AE = CF và góc DAM = góc BCM
Xét ∆AEM và ∆CFM có:
+ AE = CF
+ góc EAM = góc FCM
+ AM = CM
=> ∆AEM = ∆CFM(c.g.c) => EM = MF và góc AME = góc FMC
=> góc AME + góc EMC = góc FMC + góc EMC
=> góc MEF = góc AMC = 60º
Xét ∆EFM có EM = MF và góc MEF = 60º => ∆EFM là tam giác cân có 1 góc = 60º
=> ∆EFM là tam giác đều.
Chứng minh được: \(\Delta AMD=\Delta CMB\left(c-g-c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{BCM}\)(hai góc tương ứng)
Lại chứng minh được : \(\Delta AEM=\Delta CFM\left(c-g-c\right)\)
\(\Rightarrow ME=MF\)(hai cạnh tương ứng) (1)
Tiếp tục chứng minh được: \(\Delta EDM=\Delta FBM\left(c-g-c\right)\)
\(\Rightarrow\widehat{EMD}=\widehat{FMB}\)(hai góc tương ứng)
\(\Rightarrow\widehat{EMF}=\widehat{EMD}+\widehat{DMF}=\widehat{FMB}+\widehat{DMF}=\widehat{DMB}=60^0\)(2)
Từ (1) và (2) suy ra tam giác MEF là tam giác đều (đpcm)
Em tham khảo tại đây nhé.
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath