Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB=DC
Bài này mọi người đăng suốt mà >: vào câu hỏi tương tụ cũng có bài y hệt -.-
a Xét tam giác AMB và tam giác DMC
AM=DM (gt)
BM=CM (gt)
AMB^=DMC^ (đối đỉnh)
=>tam giác AMB = tam giác DMC (c-g-c)
=>ABM^=DMC^ (hai góc tương ứng)
b, Theo câu a ta có : ABM^=DMC^
Do 2 góc này ở vị trí sole trong và bằng nhau
=>AB//DC
C,Xét tam giác ABM và tam giác ACM
AB = AC (gt)
AM cạnh chung
BM=CM (gt)
=>Tam giác ABM = tam giác ACM (c-c-c)
=>AMB^=AMC^
Do AMB^+AMC^=180*
=> AMB^=AMC^=180*/2=90* (đpcm)
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
c: Ta có: ΔACB cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: AB//DC và AB=DC; \(\widehat{ACD}=90^0\)
b:
Ta có: ABDC là hình chữ nhật
nên AD=BC
XétΔBCA và ΔDAC có
BC=DA
CA chung
BA=DC
Do đó: ΔBCA=ΔDAC
a: Xét ΔAMB và ΔDMC có
MA=MD
MB=MC
Do đó: ΔAMB=ΔDMC
Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
mà
nên ABDC là hình chữ nhật
Suy ra: AB//DC và AB=DC;
b:
Ta có: ABDC là hình chữ nhật
nên AD=BC
XétΔBCA và ΔDAC có
BC=DA
CA chung
BA=DC
Do đó: ΔBCA=ΔDAC
a: Xét ΔABM và ΔDCM có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
DO đó: ΔABM=ΔDCM
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra: AB//DC
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM la đường cao
a: Xét ΔABM và ΔDCM có
MA=MD
góc AMB=góc DMC
MB=MC
=>ΔABM=ΔDCM
b: ΔABM=ΔDCM
=>góc ABM=góc DCM
=>AB//DC