Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: 3111<3211= (25)11 = 255
1714>1614= (24)14 = 256
vì 255<256=>3111<3211<1614<1714
a) 24 và 42.Ta có: b)316 và 275.Ta có:
24=(22)2=42 275=(33)5=315<316
=>24=42.Vậy.. =>275<316.Vậy...
c)233 và 322.Ta có: d)chịu
233=(23)11=811
322=(32)11=911>811.
=>233<322.Vậy....
a) \(2^4\)
\(4^2=\left(2^2\right)^2=2^4\)
\(\Rightarrow2^4=4^2\)
b) \(3^{16}=3^{16}\)
\(27^5=\left(3^3\right)^5=3^{15}\)
\(\Rightarrow3^{16}>27^5\)
\(199^{20}=\left(199^5\right)^4\)
\(100^{24}=\left(100^6\right)^4\)
Vì \(199^5>100^6\Rightarrow\left(199^5\right)^4>\left(100^6\right)^4\)
Từ đó \(199^{20}>100^{24}\)
a) 32n với 23n
xét 32n: Xét 23n:
=32.3n = 23.2n
=9.3n = 8.2n
Ta thấy: 9>8,3n>2n
=>32n>23n
a , 3^2n và 2^3n
Ta có : 3^2n = 3^2 . n = 9^n
2^3n = 2^3 . n = 8^n
Mà 9^n > 8^n => 3^2n > 2^3n
c , 5^36 và 11^24
Ta có : 5^36 = 5^3 . 12 = 125^12
11^24 = 11^2 . 12 = 121^12
Mà 125^12 > 121^12 => 5^36 > 11^24
b , 5^23 và 6 . 5^22
Ta có : 5^23 = 5 . 5^22
Mà 6 > 5 => 6 . 5^22 > 5 . 5^22
=> 5^23 < 6 . 5^22
đăng từng bài thui bạn êi ~.~
\(a)\)\(4x^3+12=120\)
\(\Leftrightarrow\)\(4x^3=108\)
\(\Leftrightarrow\)\(x^3=27\)
\(\Leftrightarrow\)\(x^3=3^3\)
\(\Leftrightarrow\)\(x=3\)
Vậy \(x=3\)
\(b)\) \(\left(4x-1\right)^2=25.9\)
\(\Leftrightarrow\)\(\left(4x-1\right)^2=5^2.3^2\)
\(\Leftrightarrow\)\(\left(4x-1\right)^2=\left(5.3\right)^2\)
\(\Leftrightarrow\)\(\left(4x-1\right)^2=15^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}4x-1=15\\4x-1=-15\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=16\\4x=-14\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{16}{4}\\x=\frac{-14}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{-7}{2}\end{cases}}}\)
Vậy \(x=4\) hoặc \(x=\frac{-7}{2}\)
Chúc bạn học tốt ~
\(\left(2x-15\right)^{15}=\left(2x-15\right)^3\)
\(\Leftrightarrow\)\(\left(2x-15\right)^{15}-\left(2x-15\right)^3=0\)
\(\Leftrightarrow\)\(\left(2x-15\right)^3[\left(2x-15\right)^{12}-1]=0\)
\(\Leftrightarrow\)\(\left(2x-15\right)^3=0\)
Hoặc \(\left(2x-15\right)^{12}-1=0\)
\(\Leftrightarrow\)\(2x-15=0\)
Hoặc \(\left(2x-15\right)^{12}=1\)
\(\Leftrightarrow\)\(2x=15\)
Hoặc \(\orbr{\begin{cases}2x-15=1\\2x-15=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=16\\2x=14\end{cases}}}\)
\(\Leftrightarrow\)\(x=\frac{15}{2}=7,5\)
Hoặc \(\orbr{\begin{cases}x=\frac{16}{2}\\x=\frac{14}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=8\\x=7\end{cases}}}\)
Vậy \(x=7\)\(;\)\(x=7,5\) hoặc \(x=8\)
Chúc bạn học tốt ~
Làm không biết đúng không nha :D
\(2^{3^{2^3}}=\left(\left(2^3\right)^2\right)^3=\left(8^2\right)^3=8^6\)
\(3^{2^{3^2}}=\left(\left(3^2\right)^3\right)^2=\left(9^3\right)^2=9^6\)
\(\Rightarrow\)
- Về phần so sánh hai lũy thừa thi bạn phải làm thế nào cho nó cùng cơ số hoặc cùng số mũ. Sau đó áp dụng quy tắc
Với \(a>b\Rightarrow a^m>b^m\) và ngược lại với a < b (đối với cùng số mũ) hoặc Với \(m>n\Rightarrow a^m>a^n\) và ngược lại với m < n (đối với cùng cơ số)
- Tiếp theo,về dạng: \(A=2+2^2+2^3+...+2^{900}\). Bạn có thấy tất cả cơ số đều là 2 đúng không? Vì chúng ta nhân tất cả cho 2. Được: \(2A=2^2+2^3+2^4+...+2^{901}\)
Sau đó lấy \(2A-A\) được: \(A=2^{901}-2\) (Do 2A - A = A)
Các dạng khác làm tương tự!
a/ \(9^{27}=\left(3^2\right)^{27}=3^{54}\) và \(81^{13}=\left(3^4\right)^{13}=3^{52}\Rightarrow3^{54}>3^{52}\Rightarrow9^{27}>81^{13}\)
b/ \(5^{14}=\left(5^2\right)^7=25^7< 27^7\)
d/ \(2^{300}=\left(2^3\right)^{100}=8^{100}\) và \(3^{200}=\left(3^2\right)^{100}=9^{100}\Rightarrow8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
f/ \(3^{450}=\left(3^3\right)^{150}=27^{150}\) và \(5^{300}=\left(5^2\right)^{150}=25^{150}\Rightarrow27^{150}>25^{150}\Rightarrow3^{450}>5^{300}\)
c/ \(10^{30}=\left(10^3\right)^{10}=1000^{10}\) và \(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\Rightarrow1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)