K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2021

.

11 tháng 8 2015

d) ta co : goc BHI+goc IHA =90 ( 2 goc ke phu)

----> goc BHI =90- goc IHA

ma goc IHA = goc ADI ( tam giac ADI = tam giac AHI)

nen goc BHI=90- goc ADI (1)

ta co :

goc ADE = (180- goc DAE):2 ( tam giac ADE can tai A)

ma goc DAE= 2. goc BAC ( cm cau b)

nen goc ADE = (180-2.goc BAC):2= 90-goc BAC 

---> goc BAC =90- goc ADE (2)

tu (1) va (2) suy ra goc BHI= goc BAC

 

23 tháng 5 2016

Cho tam giác ABC nhọn, đường cao AH. Vẽ điểm D và E sao cho các đường thẳng AB, Ac lad các đường trung trực của DH và EH. Lấy điểm M, N lần lượt là giao điểm của DE với AB và Ac

a) Chứng minh AB= Ae

b)Chứng minh góc DAE bằng 2 lần góc MHB

c)Chứng minh AH, BN, CM đồng quy tại 1 điểm

6 tháng 4 2017

cách này của lớp 8 nhé:

tự chứng minh BAC=1/2DAE

Mà MHB=1/2DAE

=> BAC=MHB

mà góc B chung của 2 tam giác BAC và MHB

=> tam giác BAC đồng dạng tam giác BHM (g.g)

=> \(\frac{AB}{BH}=\frac{BC}{BM}\Rightarrow\frac{AB}{BC}=\frac{BH}{BM}\)

Mà góc B chung của tam giác BHA và BMC

=> tam giác BHA đồng dạng tam giác BMC

=> BHA=BMC=90 độ => CM vuông góc AB

chứng minh tương tự => BN v góc

cách 2 (lớp 9)

giống như cách trên ta chứng minh được MHB=BAC

hay MHB=MAC

=> MAC+MHC=180

=> tứ giác AMHC nội tiếp

=> AMC=AHC=90

=> CM vuông góc AB

5 tháng 4 2017

Bài khó đây bạn mà mình cũng chỉ đang học lớp 5 .

~~~ Chúc bạn học giỏi nha ~~~

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:a) ∆ABE = ∆ADC b) Góc BMC = 120oBài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).a) Chứng minh: EM + HC = NH.b) Chứng minh: EN // FM.Bài 3:Cho...
Đọc tiếp

BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:

a) ∆ABE = ∆ADC b) Góc BMC = 120o

Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).

a) Chứng minh: EM + HC = NH.

b) Chứng minh: EN // FM.

Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.

Chứng minh rằng : Góc PCQ = 45o

Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.

a) Chứng minh rằng: BE = CD; AD = AE.

b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.

c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.

Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:

a) DM = EN

b) Đường thẳng BC cắt MN tại trung điểm I của MN.

c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.

0