Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHDC có
N là trung điểm của HD
M là trung điểm của HC
Do đó: NM là đường trung bình của ΔHDC
Suy ra: NM//DC và \(NM=\dfrac{CD}{2}\)
mà AB//DC và \(AB=\dfrac{CD}{2}\)
nên NM//AB và NM=AB
b: Xét tứ giác ABMN có
AB//NM
AB=NM
Do đó: ABMN là hình bình hành
a) Ta có : M, N lần lượt là trung điểm của HC, HD => MN là đường trung bình của tam giác HDC => MN // CD và MN = 1/2 CD
MN = 1/2 CD => 2MN = CD, mà AB = CD (gt) => MN = AB (đpcm)
b) Hình trhang ABCD vuông tại A và D (gt) => AB // CD, mà MN // CD (cmt) nên AB // MN
Mà AB = MN (cmt) nên ABMN là hình bình hành (đpcm)
CHỌN giùm mình nha !!!!!!!!!!!!!!!!!!!!!
MÌnh gợi ý cho bạn thôi. Mong bạn hiểu.
a, MN là đường trung bình của tam giác HDC nên MN song song với CD và MN =1/2 CD
Mà AB song song với CD và AB= 1/2 CD
Suy ra: MN song song với AB và MN =AB
Vậy ABMN là hình bình hành (DHNB)
b, MN song song với DC(cmt) và DC vuông góc với AD nên MN vuông góc với AD
Tam giác ADM có 2 đường cao DH, MN cắt nhau tại N.
Do đó: N là trực tâm của tam giác ADM
VÌ thế: AN vuông góc với DM
Mà AN song song với BM (vì ABMN là hình bình hành)
Vậy BM vuông góc với DM.
Chúc bạn học tốt.
a) MN là đường trung bình tam giác HDC \(\Rightarrow\hept{\begin{cases}MN=\frac{1}{2}DC=AB\\MN//DC//AB\end{cases}}\)=> MNAB là hình bình hành
b) Có \(\hept{\begin{cases}MN//DC\\AD\perp DC\end{cases}\Rightarrow MN\perp AD}\)
Mà \(DN\perp AM\)nên N là trực tâm tam giác AMD \(\Rightarrow AN\perp DM\)
Mà \(BM//AN\)(vì ANMB là hình bình hành) nên \(BM\perp DM\Rightarrow\widehat{BMD}=90^0\)
c) \(S_{ABCD}=\frac{\left(AB+DC\right).AD}{2}=\frac{\left(\frac{DC}{2}+DC\right).AD}{2}=\frac{\left(8+16\right).6}{2}=72\left(cm^2\right)\)
a, có M;N lần lượt là trđ của HC; HD (gt) xét tg DHC
=> MN là đtb của tg DHC (đn)
=> MN // DC mà DC // AB (do ABCD là hình thang) => AB // MN
MN = 1/2DC (tc) mà DC = 2AB => AB = 1/2DC => MN = AB
=> ABMN là hình bình hành (dấu hiệu)
b, MN // DC (câu a) DC _|_ AD (gt)
=> MN _|_ AD ; DN _|_ AM (gt) ; xét tg DAM
=> N là trực tâm của tg DAM
=> AN _|_ DM mà AN // BM do ABMN là hình bình hành (câu a)
=> DM _|_ BM (TC)
=> ^BMD = 90
c, có CD thì tính đc AB xong tính bth
a: \(HN=\dfrac{HD}{2}\)
\(HM=\dfrac{HC}{2}\)
Do đó: \(HN+HM=\dfrac{HD}{2}+\dfrac{HC}{2}\)
\(\Leftrightarrow NM=\dfrac{CD}{2}=AB\)
b: Xét tứ giác ABMN có
AB//MN
AB=MN
Do đó: ABMN là hình bình hành