K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 11 2017

Lời giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2(a+b+c+d)}=\frac{1}{2}\)

\(\Rightarrow \frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=1\Leftrightarrow a=b=c=d\)

Do đó:

\(A=\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)

\(\Leftrightarrow A=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)

Vậy \(A=2\)

19 tháng 11 2017

Ta có: \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)

\(\Rightarrow a=b;b=c;c=d;d=a\)

\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)

\(A=\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}\)

\(A=\dfrac{c+c+c+c}{c+c}=2\)

Vậy ....................

18 tháng 1 2022

Từ \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\Rightarrow\dfrac{1}{2}.\dfrac{a}{b}=\dfrac{1}{2}.\dfrac{b}{c}=\dfrac{1}{2}.\dfrac{c}{d}=\dfrac{1}{2}.\dfrac{d}{a}\)

⇒  \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)

⇒   \(a=b=c=d\)

Thay b = a ; c = a ; d = a vào biểu thức A ta có:

\(A=\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}+\dfrac{2011a-2010a}{2a}\)

\(A=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}\)

\(A=\dfrac{1}{2}.4=2\)

Vậy A = 2

18 tháng 1 2022

\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2a+2b+2c+2d}=\dfrac{1}{2}\)

=>\(\dfrac{a}{2b}=\dfrac{1}{2}\)=>2a=2b =>a=b

\(\dfrac{b}{2c}=\dfrac{1}{2}\)=>2b=2c =>b=c

\(\dfrac{c}{2d}=\dfrac{1}{2}\)=>2c=2d =>c=d

\(\dfrac{d}{2a}=\dfrac{1}{2}\)=>2d=2a =>d=a

=>a=b=c=d.

*\(\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)

=\(\dfrac{2011a-2010a}{a+a}+\dfrac{2011a-2010a}{a+a}+\dfrac{2011a-2010d}{a+a}+\dfrac{2011a-2010a}{a+a}\)

=\(\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}\)=2

3 tháng 1 2018

Từ \(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}\Rightarrow\dfrac{1}{2}\cdot\dfrac{a}{b}=\dfrac{1}{2}\cdot\dfrac{b}{c}=\dfrac{1}{2}\cdot\dfrac{c}{d}=\dfrac{1}{2}\cdot\dfrac{d}{a}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow a=b=c=d\)

Thay \(b=a;c=a;d=a\) vào biểu thức A ta có;

\(A=\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}+\)\(\dfrac{2011a-2010a}{2a}\)

\(A=\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}+\)\(\dfrac{a}{2a}\)

\(A=\dfrac{1}{2}\cdot4=2\)

Vậy \(A=2\)

tks bạn, lúc nào mk hỏi bạn cx trl

Y
9 tháng 2 2019

\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)

( theo tính chất dãy tỉ số bằng nhau )

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\cdot2b\\b=\dfrac{1}{2}\cdot2c\\c=\dfrac{1}{2}\cdot2d\\d=\dfrac{1}{2}\cdot2a\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\)

\(\Rightarrow P=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)

12 tháng 3 2017

ta có :\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)

suy ra:\(a=b;b=c;c=d;d=a\)

\(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{a+d}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)

\(A=\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011c-2010c}{c+c}\)

\(A=\dfrac{c+c+c+c}{c+c}=2\)

vậy giá trị của A là 2

14 tháng 3 2017

ta có \(\dfrac{ }{ }\)\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2\left(a+b+c+d\right)}=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{a}{2b}=\dfrac{1}{2}\)\(\Rightarrow\)a = b

tương tư b=c ;c = d

\(\Rightarrow\) a = b = c =d

A = \(\dfrac{2011a-2010a}{a+a}+\dfrac{2011b-2010b}{b+b}+\dfrac{2011c-2010c}{c+c}+\dfrac{2011d-2010d}{d+d}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)

14 tháng 3 2017

với dạng toán này, khi nhìn vào bn thấy ở trên tử có a;b;c;d ở duoi mẫu có a;b;c;d là bn nghĩ ngay cách tính hệ số k mà trog tlt, bit k r thì cái j chẳng tính dc, mai thi xong mk cho đề

9 tháng 4 2016

\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2a+2b+2c+2d}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)

\(\Rightarrow a=\frac{2b}{2}=b\)                       \(c=\frac{2d}{2}=d\)

\(b=\frac{2c}{2}=c\)                               \(d=\frac{2a}{2}=a\)

\(\Rightarrow a=b=c=d\)

Ta có: \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)

\(=\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}+\frac{2011a-2010a}{2a}\)

\(=\frac{4a}{2a}=2\)

23 tháng 8 2017

A ₫ 2 day ban so yeoung cheing nhe. Cac ban kcho mik nha

24 tháng 6 2021

Vì a,b,c,d>0 ta áp dụng t/c dãy tỉ số bằng nhau:

`a/(2b)=b/(2c)=c/(2d)=d/(2a)=(a+b+c+d)/(2a+2b+2c+2d)=1/2`

`=>a/(2b)=1/2=>a=b`

Tương tự ta có:`b=c,c=d,d=a`

`=>a=b=c=d`

`=>A=(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)+(2011a-2010a)/(a+a)=1/2+1/2+1/2+1/2=2`

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{2b}=\dfrac{b}{2c}=\dfrac{c}{2d}=\dfrac{d}{2a}=\dfrac{a+b+c+d}{2b+2c+2d+2a}=\dfrac{1}{2}\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{a}{2b}=\dfrac{1}{2}\\\dfrac{b}{2c}=\dfrac{1}{2}\\\dfrac{c}{2d}=\dfrac{1}{2}\\\dfrac{d}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Leftrightarrow a=b=c=d\)

Ta có: \(A=\dfrac{2011a-2010b}{c+d}+\dfrac{2011b-2010c}{d+a}+\dfrac{2011c-2010d}{a+b}+\dfrac{2011d-2010a}{b+c}\)

\(=\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}+\dfrac{a}{2a}=2\)