Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình a, ta thấy
\(\angle\left(A\right)+\angle\left(DCA\right)=120+60=180^0\)
mà 2 góc này ở vị trí trong cùng phía
\(=>AB//CD\left(1\right)\)
có \(\angle\left(DCE\right)+\angle\left(E\right)=40+140=180^O\)
mà 2 góc này ở vị trí trong cùng phía
\(=>CD//EF\left(2\right)\)
(1)(2)\(=>AB//EF\)
hình b,
\(=\angle\left(BAD\right)=\angle\left(ADC\right)=30^0\)
mà 2 góc này ở vị trí so le trong \(=>AB//CD\left(1\right)\)
có \(\angle\left(CDE\right)=\angle\left(DEF\right)=40^o\)
mà 2 góc này ở vị trí so le trong \(=>CD//EF\left(2\right)\)
(1)(2)\(=>AB//EF\)
refer
a)
ta có: AC=EC
ECA=60
=> tam giác AEC đều
b)
ta có tam giấcEC đều => EA=AC=EC
ABC=90-60=30
BAE=90-60=30
=> tam giác ABE cân tại E => BE=EA mà EA=AC=> BE=AC
c)
theo câu b, ta có tam giác ABE cân tại E=> __BE=EA
|__EBA=EAB
xét 2 tam giác vuông BEF và AEF cso:
EA=EB(cmt)
EBA=EAB(cmt)
=> tam giác BEF AEF(CH-GN)
=> FB=FA=> F là trung điểm của AB
d) ta có: tính chất trong 1 tam giác vuông cạnh đối diện góc 30 độ = nửa cạnh huyền
=> AC=1/2 BC=1/2 x6=3(cm)
bài 3
a, vì sao a//b
b tính số đo các góc ở đỉnh C
mk viết cả 2 bài nha