Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mũ kí hiệu là ^ bạn nhé
C = 3 + 3 ^ 2 + 3 ^ 3 + .... + 3^ 60 có 60 số hạng
C = ( 3 + 3 ^ 2 ) + ( 3 ^ 3 + 3 ^ 4 ) + ..... + ( 3 ^ 59 + 3 ^ 60 ) có 60 : 2 = 30 cặp
C = 3 x ( 1 + 3 ) + 3 ^ 3 x ( 1 + 3 ) + .... + 3 ^ 59 x ( 1 + 3 )
C = 3 x 4 + 3 ^ 3 x 4 + ..... + ^ 59 x 4
C = ( 3 + 3 ^ 3 + ... + 3 ^ 59 ) x 4
C = ( 3 + 3^ 3 +... + 3 ^ 59 ) x 2x 2
Vì 2 chia hết cho 2 nên C chia hết cho 2
Câu b,c tương tự,chỉ cần bạn cặp 3 và 4 số lại
a, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100
=> 3A = 3( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100)
=> 3A = 3. 3 + 3. 3^2 + 3. 3^3 + ... + 3. 3^99 + 3. 3^100
=> 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101
=> 3A - A = ( 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^101 ) - ( 3 + 3^2 + 3^3 + ... + 3^99 + 3^100 )
=> 2A = 3^101 - 3
=> A = \(\dfrac{3^{101}-3}{2}\)
Vậy dạng viết gọn của A là: \(\dfrac{3^{101}-3}{2}\)
b, Ta có: A = 3 + 3^2 + 3^3 + ... + 3^99 + 3^100
=> A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )
=> A = 3( 1 + 3 ) + 3^3 ( 1 + 3 ) + ... + 3^99( 1 + 3 )
=> A = 3. 4 + 3^3. 4 + ... + 3^99. 4
=> A = 4( 3 + 3^3 + ... + 3^99 ) chia hết cho 4
=> A chia hết cho 4
Vậy A chia hết cho 4 ( điều phải chứng minh )
Chúc bạn hoc tốt! ~
ê bạn là antifan hay ARMY thế hở, mà nếu là ARMY thì sao lại để logo thế kia, còn nếu là anti í thì sao lại có chữ ARMY dưới phần logo và nickname hở, m là gì để tao còn biết.
Nếu vậy thi \(3+3^3+3^5+....+3^{2009}\) chứ, 3^2010 là sao mà hợp sãy số
Bài 1:
A=400x7x36+1620
*400x7x36 \(⋮\)2;3;5;9
1620 \(⋮\) 2;3;5;9
\(\Rightarrow\)400x7x36+1620\(⋮\) 2;3;5;9
Bài 2:
C=3+32+33+........+360
=(3+32)+(33+34)+...........+(359+360)
=3.(1+2)
Bài 2 :
a, \(C=3+3^2+3^3...+3^{60}\)
\(\Rightarrow C=\left(3+3^2\right)+\left(3^3+3^4\right)+...\left(3^{59}+3^{60}\right)\)
\(\Rightarrow C=1\left(1+3\right)+3^3\left(1+3\right)+..+3^{59}\left(1+3\right)\)
\(\Rightarrow C=4.\left(1+3^3+...+3^{59}\right)\)
\(\Rightarrow C⋮4\)
\(b,1+3+3^2+3^3+...+3^{60}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^{60}+3^{61}\)
\(\Rightarrow3A-A=\left(3+3^2+3^3..+3^{60}+3^{61}\right)-\left(1+3+3^2+...+3^{60}\right)\)
\(\Rightarrow2A=3^{61}-1\)
\(\Rightarrow A=\frac{3^{61}-1}{2}\)