K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

$a^3+b^3=2(c^3-8d^3)$

$a^3+b^3+c^3+d^3=c^3+d^3+2(c^3-8d^3)$

$=3c^3-15d^3=3(c^3-5d^3)\vdots 3$ 

Khi đó:

$(a+b+c+d)^3=(a+b)^3+(c+d)^3+3(a+b)(c+d)(a+b+c+d)$

$=a^3+b^3+c^3+d^3+3ab(a+b)+3cd(c+d)+3(a+b)(c+d)(a+b+c+d)\vdots 3$ do:

$a^3+b^3+c^3+d^3\vdots 3$

$3ab(a+b)\vdots 3$

$3cd(c+d)\vdots 3$

$3(a+b)(c+d)(a+b+c+d)\vdots 3$

Vậy: 

$(a+b+c+d)^3\vdots 3$

$\Rightarrow a+b+c+d\vdots 3$

29 tháng 7 2021

tại sao (a+b+c+d)3=(a+b)3+(c+d)3+3(a+b)(c+d)(a+b+c+d) đấy ạ?

11 tháng 6 2019

Bài 2.

\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)

( 3 số nguyên liên tiếp chia hết cho 3)

\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3

=> P chia hết cho 3

=>5(a^3+b^3+c^3+d^3)=18(c^3+d^3)

=>5(a^3+b^3+c^3+d^3) chia hết cho 6

=>a^3+b^3+c^3+d^3 chia hêt cho 6

a^3-a=a(a+1)(a-1) chia hết cho 3!=6

b^3-b=b(b+1)(b-1) chia hết cho 3!=6

c^3-c=c(c+1)(c-1) chia hết cho 3!=6

d^3-d=d(d+1)(d-1) chia hết cho 3!=6

=>a^3+b^3+c^3+d^3-a-b-c-d chia hết cho 6

=>a+b+c+d chia hết cho 6

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!