Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: k=xy=5x2=10
b: Thay x=3 vào y=3x, ta được:
y=3x3=9
Vậy: điểm A(3;9) thuộc đồ thị y=3x
c: f(4)=16-1=15
a, Vì 2 đại lượng x và y tỉ lệ nghịch với nhau
⇒ x . y = a (a ≠ 0)
Khi x = 2 thì y = 5
⇒ 2 . 5 = a ⇒ a = 10
Vậy hệ số tỉ lệ của y đối với x là 10
b, x . y = 10 ⇒ y = \(\dfrac{10}{x}\)
c, x . y = 10
x = 5 ⇒ y = 10 : 5 = 2
x = -10 ⇒ y = 10 : (-10) = -1
1/
a/ Vì x và y tỉ lệ nghịch với nhau
=> xy = a
Mà khi x = 4 thì y = 6 => 4.6 = a => a = 24
b/ \(y=\frac{24}{x}\)
c/ Khi x = 1 => y = \(\frac{24}{1}=24\).
2/ Gọi x, y, z (cm) lần lượt là độ dài ba cạnh của một tam giác. (x, y, z > 0)
Vì độ dài ba cạnh của một tam giác tỉ lệ thuận với 3, 4, 5
=> \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)và x + y + z = 60
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{60}{12}=5\)
=> \(\hept{\begin{cases}\frac{x}{3}=5\\\frac{y}{4}=5\\\frac{z}{5}=5\end{cases}\Rightarrow\hept{\begin{cases}x=15\\y=20\\z=25\end{cases}}}\).
Vậy độ dài ba cạnh của tam giác lần lượt là 15cm, 20cm, 25cm.
Câu 3: a) Ta có: y = 3x
Cho x = 1 => y = 3 . 1 = 3
=> A(1;3)
đồi thị của hàm số y = 3x là đường thẳng đi qua gốc tọa độ và điểm A
b) Khi f(-1) => y = 3 . (-1) = -3
Khi f(0) => y = 3 . 0 = 0
Khi f\(\left(\frac{1}{3}\right)\Rightarrow y=3.\frac{1}{3}=1\)
c) Khi y = -3 => -3 = 3x => x = \(\frac{-3}{3}\) = -1
Khi y = 6 => 6 = 3x => x = \(\frac{6}{3}\) = 2
chỉ trả cần trả lời câu b bài 4 thôi