Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : x/3 = y/4 = z/5 => x²/9 = y²/16 = z²/25
=> 2x²/18 = 2y²/32 = 3z²/75
=> x²/9 = (2x² + 2y² - 3z²)/(18 + 32 - 75) = - 100/(-25) = 1/4
=> x²/9 = 1/4 => x² = 9/4 => x = ±3/2
y²/16 = 1/4 => y² = 4 => y = ± 2
z²/25 = 1/4 => z² = 25/4 => z = ±5/2
Mà x, y, z cùng dấu.
Vậy (x ; y ; z) = (3/2 ; 2 ; 5/2) , (-3/2 ; -2 ; -5/2)
B3 ko tìm được x,y,z thỏa mãn do kết quả là 1 số không dương
b1 \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c;\frac{c}{a}=1\Rightarrow c=a\)
\(\Rightarrow a=b=c\)
b2 \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}=k\)
=> \(k=\frac{1}{2}\)
b3: Vì x:y:z= a:b:c
nên x/a= y/b=z/c
ADTCCDTSBN, ta có:
x/a=y/b=z/c= (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
x/a=y/b=z/c suy ra (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
suy ra x^2/a^2 = y^2/b^2 = z^2/c^2= (x+y+z)^2
ADTCCDTSBN, có:
(x+y+z)^2= x^2/a^2=...=z^2/c^2=x^2+y^2+z^2/a^2+b^2+c^2= x^2+y^2+z^2/1= x^2+y^2+z^2
Vậy...
a) <=> (8-5x+x-2)(x+2) + 4(x^2-x-2)=0
<=> 6x +12 - 4x^2 - 8x +4x^2 -4x -8 =0
<=> -6x -4 = 0
<=> x= 4/6
1) Đặt \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc\)
\(\Rightarrow A=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
\(\Rightarrow A\)có dạng \(4k-2abc\left(k\in Z\right)\)
Giả sử trong 3 số \(a,b,c\)có 1 số lẻ \(\Rightarrow\)Trong \(a,b,c\)có một số chẵn \(\left(a+b+c=4\right)\)
\(\Rightarrow2abc⋮4\)
Giả sử trong \(a,b,c\)có 1 số chẵn \(\Rightarrow2abc⋮4\)
\(\Rightarrow2abc=4m\)\(\Rightarrow A=4k-4m\). Mà \(4k-4m=4\left(k-m\right)⋮4\Rightarrow A⋮4\)
Vậy \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc⋮4\)(đpcm)
Bài 1:
a) \(A=75\left(1+4+4^2+...+4^{100}\right)+25\)
Ta thấy 75.4 = 300. Vậy nên \(A=75+300+300.4+300.4^2+....+300.4^{99}+25\)
\(A=300\left(1+4+4^2+...+4^{99}\right)+\left(75+25\right)\)
\(A=300\left(1+4+4^2+...+4^{99}\right)+100⋮100\)
Vậy A chia hết 100.
b) \(x^2+y^2=2y-1\Leftrightarrow x^2+\left(y^2-2y+1\right)=0\Leftrightarrow x^2+\left(y-1\right)^2=0\)
Vậy thì \(\hept{\begin{cases}x^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)
Bài 2:
Từ đề bài ta có:
\(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=\left(a+b+c\right)^2=20+24-28=16\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=4\\a+b+c=-4\end{cases}}\)
TH1: a + b + c = 4; khi đó ta có:
\(\hept{\begin{cases}a=20:\left(a+b+c\right)=5\\b=24:\left(a+b+c\right)=6\\c=-28:\left(a+b+c\right)=-7\end{cases}}\)
Vậy a = 5; b = 6 và c = -7.
TH1: a + b + c = -4; khi đó ta có:
\(\hept{\begin{cases}a=20:\left(a+b+c\right)=-5\\b=24:\left(a+b+c\right)=-6\\c=-28:\left(a+b+c\right)=7\end{cases}}\)
Vậy a = -5; b = -6 và c = 7.