K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2017

Bài 1:

a)  \(A=75\left(1+4+4^2+...+4^{100}\right)+25\)

Ta thấy 75.4 = 300. Vậy nên \(A=75+300+300.4+300.4^2+....+300.4^{99}+25\)

\(A=300\left(1+4+4^2+...+4^{99}\right)+\left(75+25\right)\)

\(A=300\left(1+4+4^2+...+4^{99}\right)+100⋮100\)

Vậy A chia hết 100.

b) \(x^2+y^2=2y-1\Leftrightarrow x^2+\left(y^2-2y+1\right)=0\Leftrightarrow x^2+\left(y-1\right)^2=0\)

Vậy thì \(\hept{\begin{cases}x^2=0\\\left(y-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Bài 2:

Từ đề bài ta có:

\(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=\left(a+b+c\right)^2=20+24-28=16\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=4\\a+b+c=-4\end{cases}}\)

TH1: a + b + c = 4; khi đó ta có:

\(\hept{\begin{cases}a=20:\left(a+b+c\right)=5\\b=24:\left(a+b+c\right)=6\\c=-28:\left(a+b+c\right)=-7\end{cases}}\) 

Vậy a = 5; b = 6 và c = -7.

TH1: a + b + c = -4; khi đó ta có:

\(\hept{\begin{cases}a=20:\left(a+b+c\right)=-5\\b=24:\left(a+b+c\right)=-6\\c=-28:\left(a+b+c\right)=7\end{cases}}\)

Vậy a = -5; b = -6 và c = 7.

21 tháng 8 2015

Bài 1 : x/3 = y/4 = z/5 => x²/9 = y²/16 = z²/25 
=> 2x²/18 = 2y²/32 = 3z²/75 
=> x²/9 = (2x² + 2y² - 3z²)/(18 + 32 - 75) = - 100/(-25) = 1/4 
=> x²/9 = 1/4 => x² = 9/4 => x = ±3/2 
y²/16 = 1/4 => y² = 4 => y = ± 2 
z²/25 = 1/4 => z² = 25/4 => z = ±5/2 
Mà x, y, z cùng dấu. 
Vậy (x ; y ; z) = (3/2 ; 2 ; 5/2) , (-3/2 ; -2 ; -5/2)

11 tháng 7 2017

B3 ko tìm được x,y,z thỏa mãn do kết quả là 1 số không dương

2 tháng 8 2015

b1    \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)

        \(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c;\frac{c}{a}=1\Rightarrow c=a\)

        \(\Rightarrow a=b=c\)

b2   \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2a+2b+2c}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}=k\)

                           =>  \(k=\frac{1}{2}\)                                       

6 tháng 8 2015

b3: Vì x:y:z= a:b:c
nên x/a= y/b=z/c
ADTCCDTSBN, ta có:
x/a=y/b=z/c= (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
x/a=y/b=z/c suy ra (x/a)^2=(y/b)^2=(z/c)^2=(x+y+z)^2
suy ra x^2/a^2 = y^2/b^2 = z^2/c^2= (x+y+z)^2
ADTCCDTSBN, có:
(x+y+z)^2= x^2/a^2=...=z^2/c^2=x^2+y^2+z^2/a^2+b^2+c^2= x^2+y^2+z^2/1= x^2+y^2+z^2
Vậy...

4 tháng 5 2016

a) <=> (8-5x+x-2)(x+2) + 4(x^2-x-2)=0

<=> 6x +12 - 4x^2 - 8x +4x^2 -4x -8 =0

<=> -6x -4 = 0

<=> x= 4/6

 

4 tháng 5 2016

Ta có VT =\(a^2-c^2-2ab+b^2-\left[\left(a-b\right)^2-c^2\right]\)

\(a^2-c^2-2ab+b^2-\left(a^2-2ab+b^2\right)+c^2\)

=\(a^2-c^2-2ab+b^2-a^2+2ab-b^2+c^2\)

= 0 =VP (đpcm)

Bài 2: Thu gọn và tìm bậc của các đơn thức sau a) 2 5xy 2bx y ; b) 4 2 4 ab c 20a bx 5 ; c) 2 2 1 1,5xy bcx b 4 ; d) 2 3 2 2 1 2ax y x y zb 2 Bài 3: Cho biểu thức A = 2 3 𝑥 3 . 3 4 𝑥𝑦 2 . 𝑧 2 và B = 9x𝑦 3 . (−2𝑥 2𝑦𝑧 3 ) 1) Thu gọn và tìm bậc của đơn thức thu gọn A và B 2) Cho biết phần biến và phần hệ số của đơn thức thu gọn A và B 3) Tính tích của hai đơn thức thu gọn A và B. Bài 4:Cho đơn thức C...
Đọc tiếp

Bài 2: Thu gọn và tìm bậc của các đơn thức sau a) 2 5xy 2bx y ; b) 4 2 4 ab c 20a bx 5 ; c) 2 2 1 1,5xy bcx b 4 ; d) 2 3 2 2 1 2ax y x y zb 2 Bài 3: Cho biểu thức A = 2 3 𝑥 3 . 3 4 𝑥𝑦 2 . 𝑧 2 và B = 9x𝑦 3 . (−2𝑥 2𝑦𝑧 3 ) 1) Thu gọn và tìm bậc của đơn thức thu gọn A và B 2) Cho biết phần biến và phần hệ số của đơn thức thu gọn A và B 3) Tính tích của hai đơn thức thu gọn A và B. Bài 4:Cho đơn thức C = 2𝑥𝑦 2 ( 1 2 𝑥 2𝑦 2𝑥) ; D = 2 3 𝑥𝑦 2 . ( 3 2 𝑥) a) Thu gọn đơn thức C, D. Xác định phần hệ sô, phần biến, tìm bậc của đơn thức. b) Tính giá trị của đơn thức C tại x= 1, y = -1 c) Tính giá trị của đơn thức D tại x = -1, y = -2 d) Chứng minh đơn thức C,D luôn nhận giá trị dương với mọi x ≠ 0, y ≠ 0, Bài 5. Cho A = 3xy – 4xy + 10xy – xy a) Tính giá trị của A tại x = 1, y = -1 b) Tìm điều kiện của x, y để A > 0. c) Tìm điều kiện của x, y để A > 0. d) Tìm x, y nguyên để A = - 24

0
Bài 2: Thu gọn và tìm bậc của các đơn thức sau a) 2 5xy 2bx y ; b) 4 2 4 ab c 20a bx 5 ; c) 2 2 1 1,5xy bcx b 4 ; d) 2 3 2 2 1 2ax y x y zb 2 Bài 3: Cho biểu thức A = 2 3 𝑥 3 . 3 4 𝑥𝑦 2 . 𝑧 2 và B = 9x𝑦 3 . (−2𝑥 2𝑦𝑧 3 ) 1) Thu gọn và tìm bậc của đơn thức thu gọn A và B 2) Cho biết phần biến và phần hệ số của đơn thức thu gọn A và B 3) Tính tích của hai đơn thức thu gọn A và B. Bài 4:Cho đơn thức C...
Đọc tiếp

Bài 2: Thu gọn và tìm bậc của các đơn thức sau a) 2 5xy 2bx y ; b) 4 2 4 ab c 20a bx 5 ; c) 2 2 1 1,5xy bcx b 4 ; d) 2 3 2 2 1 2ax y x y zb 2 Bài 3: Cho biểu thức A = 2 3 𝑥 3 . 3 4 𝑥𝑦 2 . 𝑧 2 và B = 9x𝑦 3 . (−2𝑥 2𝑦𝑧 3 ) 1) Thu gọn và tìm bậc của đơn thức thu gọn A và B 2) Cho biết phần biến và phần hệ số của đơn thức thu gọn A và B 3) Tính tích của hai đơn thức thu gọn A và B. Bài 4:Cho đơn thức C = 2𝑥𝑦 2 ( 1 2 𝑥 2𝑦 2𝑥) ; D = 2 3 𝑥𝑦 2 . ( 3 2 𝑥) a) Thu gọn đơn thức C, D. Xác định phần hệ sô, phần biến, tìm bậc của đơn thức. b) Tính giá trị của đơn thức C tại x= 1, y = -1 c) Tính giá trị của đơn thức D tại x = -1, y = -2 d) Chứng minh đơn thức C,D luôn nhận giá trị dương với mọi x ≠ 0, y ≠ 0, Bài 5. Cho A = 3xy – 4xy + 10xy – xy a) Tính giá trị của A tại x = 1, y = -1 b) Tìm điều kiện của x, y để A > 0. c) Tìm điều kiện của x, y để A > 0. d) Tìm x, y nguyên để A = - 24

0
Bài 1:  Tìm x  biết:a./               b./               c*./    Bài 2:   Tìm x, y, z biết :     a/               b/          c/    =                          d/                         e/  =  và x + y = 22       f/     và Bài 3: Tìm x, y  biết:a) x : 3 = 4 : 5                   b)  (x+2).(x-3) = 0                 c)   x2 – 3x = 0          d)      e) 9x =81             f)                   h)  và  x + y=  -21      i)  và  3x - 2y = -2k*) 2x = 3y = 5z và x + 2y – z =...
Đọc tiếp

Bài 1:  Tìm x  biết:

a./               b./               c*./    

Bài 2:   Tìm x, y, z biết :     a/               b/          c/    =                          

d/                         e/  =  và x + y = 22       f/     và

Bài 3: Tìm x, y  biết:

a) x : 3 = 4 : 5                   b)  (x+2).(x-3) = 0                 c)   x2 – 3x = 0          d)      e) 9x =81             

f)                   h)  và  x + y=  -21      i)  và  3x - 2y = -2

k*) 2x = 3y = 5z và x + 2y – z = 29                               l*)  và 3x – 2y – z = -29

0
16 tháng 6 2017

1) Đặt \(A=\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc\)

\(\Rightarrow A=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)

\(\Rightarrow A\)có dạng \(4k-2abc\left(k\in Z\right)\)

Giả sử trong 3 số \(a,b,c\)có 1 số lẻ \(\Rightarrow\)Trong \(a,b,c\)có một số chẵn \(\left(a+b+c=4\right)\)

\(\Rightarrow2abc⋮4\)

Giả sử trong \(a,b,c\)có 1 số chẵn \(\Rightarrow2abc⋮4\)

\(\Rightarrow2abc=4m\)\(\Rightarrow A=4k-4m\). Mà \(4k-4m=4\left(k-m\right)⋮4\Rightarrow A⋮4\)

Vậy \(\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc⋮4\)(đpcm)