K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài tập:Bài 1: Cho D ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.1) Chứng minh hai tam giác ABH và ACH bằng nhau2) Tìm độ dài đoạn AH?c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực? Bài 2:  Cho tam giác ABC cân tại A, gọi H là trung điểm của cạnh BC. Từ H vẽ HM vuông góc AB tại M, HN vuông AC...
Đọc tiếp

Bài tập:

Bài 1: Cho D ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.

1) Chứng minh hai tam giác ABH và ACH bằng nhau

2) Tìm độ dài đoạn AH?

c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực?

 

Bài 2:  Cho tam giác ABC cân tại A, gọi H là trung điểm của cạnh BC. Từ H vẽ HM vuông góc AB tại M, HN vuông AC tại N.

a) Chứng minh hai tam giác ABH và ACH bằng nhau

b) Chứng minh HM = HN

c) Chứng minh AM = AN

d) AH có là đường trung trực của tam giác ABC hay không? Vì sao?

 

Bài 3: Cho tam giác ABC có ba góc nhọn, vẽ hai đường cao AD và BE cắt nhau tại H. Cho biết góc ACB = 50 độ.

a) Chứng minh CH vuông góc AB

b) Tính góc BHD và góc DHE?

 

Bài 4: Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B, trên tia BC lấy điểm E sao cho BA = BE, gọi H là giao điểm của AB với DE.

a) Chứng minh DE vuông góc BE

b) Chứng minh BD là đường trung trực của AE

c) Chứng minh AE song song với HC.

 

 

0
7 tháng 3 2020

b1: tam giác ABC vuông tại A (Gt) => AB^2 + AC^2 = BC^2 (Pytago)

AB = 6; AC = 8

=> 6^2 + 8^2 = BC^2

=> BC^2 = 100

=> BC = 10 do BC > 0

Có M là trung điểm của BC => AM là trung tuyến của tam giác ABC vuông tại A 

=> AM = BC/2

=> AM = 10 : 2 = 5 

b, xét tam giác BEC có : EM là trung tuyến

EM là đường cao

=> tam giác BEC cân tại E (định lí)

bạn ơi bài 2 nx giúp mk vs

1:

a: \(BC=\sqrt{6^2+8^2}=10cm\)

=>AM=10/2=5cm

b: Xét ΔEBC có

EM vừa là đường cao, vừa là trung tuyến

=>ΔEBC cân tại E

Bài 2:

Xét ΔBAE vuông tại A và ΔBHE vuông tại H co

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH và EA=EH

=>BE là trung trực của AH

a) Xét ΔBAH vuông tại A và ΔBDH vuông tại D có 

BH chung

\(\widehat{ABH}=\widehat{DBH}\)(BH là tia phân giác của \(\widehat{ABD}\))

Do đó: ΔBAH=ΔBDH(cạnh huyền-góc nhọn)

b) Ta có: ΔBAH=ΔBDH(cmt)

nên BA=BD(hai cạnh tương ứng) và HA=HD(Hai cạnh tương ứng)

Ta có: BA=BD(cmt)

nên B nằm trên đường trung trực của AD(1)

Ta có: HA=HD(cmt)

nên H nằm trên đường trung trực của AD(2)

Từ (1) và (2) suy ra BH là đường trung trực của AD

1 tháng 8 2021

Thank bạn nhiều ạ,bạn biết làm câu c ko ạ 😥

26 tháng 4 2021

a) Xét tam giác vuông ABE và tam giác vuông HBE (^BAE = ^BHE = 90o)

BE chung

^ABE = ^HBE (BE là phân giác ^ABC)

=> tam giác vuông ABE = tam giác vuông HBE (ch - gn)

b) Ta có: AE = HE (tam giác vuông ABE = tam giác vuông HBE)

=> E thuộc đường trung trực của AH (1)

Ta có: AB = HB (tam giác vuông ABE = tam giác vuông HBE)

=> B thuộc đường trung trực của AH (2)

Từ (1) và (2) => BE là đường trung trực của AH (đpcm)

c) Ta có: ^BEK = ^BEA + ^AEK

               ^BEC = ^BEH + ^HEC

Mà ^BEA = ^BEH (tam giác vuông ABE = tam giác vuông HBE)

      ^AEK = ^HEC (2 góc đối đỉnh)

=> ^BEK = ^BEC

Xét tam giác BEK và tam giác BEC: 

^BEK = ^BEC (cmt)

^KBE = ^CBE (BE là phân giác ^ABC)

BE chung

=> tam giác BEK = tam giác BEC (g - c - g)

=> EK = EC (cặp cạnh tương ứng)