K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Trong đường tròn nhỏ:

AB > CD => OH < OK (định lí 3)

b) Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

c) Trong đường tròn lớn:

ME > MF => MH > MK

30 tháng 4 2021

a) Xét trong đường tròn nhỏ:

Theo định lí 2: trong hai dây của một đường tròn, dây nào lớn hơn thì dây đó gần tâm hơn.

Theo giả thiết AB>CD suy ra AB gần tâm hơn, tức là  OH<OK.

b) Xét trong đường tròn lớn:

Theo định lí 2: trong hai dây của một đường tròn, dây nào gần tâm hơn thì dây đó lớn hơn.

Theo câu a, ta có: OH<OK⇒ME>MF.

c) Xét trong đường tròn lớn:

Vì OH⊥ME⇒EH=MH=ME2 (Định lý 2 - trang 103).

Vì OK⊥MF⇒KF=MK=MF2 (Định lý 2 - trang 103). 

Theo câu b, ta có: 

28 tháng 11 2019

a) Trong đường tròn nhỏ:

AB > CD => OH < OK (định lí 3)

b) Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

c) Trong đường tròn lớn:

ME > MF => MH > MK

25 tháng 4 2017

a) Xét đường tròn nhỏ ta được OH<OK.

b) Xét đường tròn lớn ta được ME>MF.

c) Từ kết quả câu b) suy ra MH>MK.

12 tháng 9 2018

Trong đường tròn nhỏ:

AB > CD => OH < OK (định lí 3)

8 tháng 11 2018

Trong đường tròn lớn:

OH < OK => ME > MF (định lí 3)

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MFBài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.Bài 3....
Đọc tiếp

Bài 1: Cho đường tròn (O), đường kính AB, dây CD vuông góc với AB tại điểm H thuộc bán kính OA. Gọi M là điểm thuộc bán kính OB, E và F theo thứ tự là giao điểm của CM và DM với đường tròn (E khác C, F khác D). Chứng minh rằng: a) MC = MD b) ME = MF

Bài 2: Cho đường tròn (O) đường kính AB. Vẽ các dây BC, BD thuộc hai nửa mặt phẳng đối nhau bờ AB sao cho BD > BC. So sánh độ dài hai dây AD và AC.

Bài 3. Cho đường tròn (O), hai dây AB và AC vuông góc với nhau có độ dài theo thứ tự bằng 10cm và 24cm. a) Tính khoảng cách từ tâm đến mỗi dây b) chứng minh rằng ba điểm B, O, C thẳng hàng.

Bài 4. Cho đường tròn (O), hai dây AB và CD bằng nhau, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Trên tia đối của tia AB lấy điểm E sao cho AE = BM. Trên tia đối của tia CD lấy điểm F sao cho CF = DM. Chứng minh rằng OE = OF.

Bài 5. Cho đường tròn (O), hai dây AB và CD có AB > CD, các tia AB và CD cắt nhau tại điểm M nằm ngoài đường tròn. Gọi H và K theo thứ tự là trung điểm của AB và CD. So sánh các độ dài MH và MK. 

giải giúp mình vs ạ . tạo mình đang cần gấp . cảm ơn nha

 

0
29 tháng 4 2021

Lời giải chi tiết

a) Nối OE. 

Vì HA=HBHA=HB  nên  OH⊥ABOH⊥AB (ĐLí 2 - trang 103: đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)

Vì KC=KDKC=KD  nên  OK⊥CDOK⊥CD. (ĐLí 2 - trang 103: đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)

Mặt khác, AB=CDAB=CD nên OH=OKOH=OK (hai dây bằng nhau thì cách đều tâm).

Xét ΔHOEΔHOE và ΔKOEΔKOE có:

OH=OKOH=OK 

EOEO chung

ˆEHO=ˆEKO=900EHO^=EKO^=900

Suy ra ΔHOE=ΔKOEΔHOE=ΔKOE (cạnh huyền - cạnh góc vuông)

Suy ra EH=EK(1)EH=EK(1) 

b) Theo giả thiết, AB=CDAB=CD nên AB2=CD2AB2=CD2 hay AH=KCAH=KC  (2)

Từ (1) và (2) suy ra EH+HA=EK+KCEH+HA=EK+KC  

hay  EA=EC.

29 tháng 4 2021

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Nối OE ta có: AB = CD

=> OH = OK (hai dây bằng nhau thì cách đều tâm)

H là trung điểm của AB nên OH ⊥ AB (đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)

K là trung điểm của CD nên OK ⊥ CD (đường kính đi qua trung điểm của dây không đi qua tâm thì vuông góc với dây đó)

Hai tam giác vuông OEH và OEK có:

    OE là cạnh chung

    OH = OK

Do đó ΔOEH = ΔOEK (cạnh huyền, cạnh góc vuông)

=> EH = EK         (1). (đpcm)

b) Ta có: H là trung điểm của AB nên AH = \(\frac{1}{2}\)AB

K là trung điểm của CD nên CK = \(\frac{1}{2}\)CD

\(AH=\frac{1}{2}AB\)(định lí 1)

Tương tự ta có KC = \(\frac{1}{2}\)CD

Mà AB = CD (gt) suy ra AH = KC     (2)

Từ (1) và (2) suy ra:

EA = EH + HA = EK + KC = EC

Vậy EA = EC. (đpcm)

21 tháng 2 2017

Trong đường tròn lớn:

ME > MF => MH > MK

30 tháng 4 2021

giải:

Vẽ OH⊥EFOH⊥EF.

Xét tam giác HOA vuông tại H ta có:

OH<OAOH<OA.

Suy ra EF>BC.EF>BC.

Nhận xét. Trong các dây đi qua một điểm A ở trong đường tròn, dây vuông góc với OA là dây ngắn nhất.

16 tháng 8 2021

Kẻ OH \perp EF.

Trong tam giác OHA vuông tại H, ta có:

OA>OH

Suy ra BC<EF