Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !
\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'
Ta có : \(x-24=y\) hay cũng có thể viết \(x-y=24\)
Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\) ( vì \(x-y=24\) )
\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)
\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)
Vậy \(x=42\) và \(y=18\)
1
- fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
Ez lắm =)
Bài 1:
Với mọi gt \(x,y\in Q\) ta luôn có:
\(x\le\left|x\right|\) và \(-x\le\left|x\right|\)
\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)
Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu "=" xảy ra khi: \(xy\ge0\)
Ta có:
\(\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}\)
\(=\frac{2\left(x+y+z+t\right)}{x+y+z+t}\left(tcdtsbn\right)\)=2
\(\Rightarrow y+z+t=2x;z+t+x=2y;\)
\(t+x+y=2z;x+y+z=2t\)
Tu do de CM x=y=z=t
Khi do
\(A=1+1+1+1=4\)
Xet \(x+y+z+t=0\)
\(\Rightarrow A=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=-1-1-1-1=-4\)
Xet \(x+y+z+t\ne0\)
\(\Rightarrow\frac{y+z+t}{x}=\frac{z+t+x}{y}=\frac{t+x+y}{z}=\frac{x+y+z}{t}=\frac{3\left(x+y+z+t\right)}{x+y+z+t}=3\)
\(\Rightarrow x=y=z=t\ne0\)
\(\Rightarrow A=4\)
Ta có \(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{y+z+x+z+x+y-2-3+5}\)
\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
=> x + y + z = 1/2
Lại có \(\hept{\begin{cases}\frac{x}{y+z-2}=\frac{1}{2}\\\frac{y}{z+x-3}=\frac{1}{2}\\\frac{z}{x+y+5}=\frac{1}{2}\end{cases}}\Rightarrow\hept{\begin{cases}2x=y+z-2\\2y=x+z-3\\2z=x+y+5\end{cases}}\Rightarrow\hept{\begin{cases}3x=x+y+z-2\\3y=x+y+z-3\\3z=x+y+z+5\end{cases}}\Rightarrow\hept{\begin{cases}3x=-\frac{3}{2}\\3y=-\frac{5}{2}\\3z=\frac{11}{2}\end{cases}}\)
=> \(\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{5}{6}\\z=\frac{11}{6}\end{cases}}\)
Dễ thấy nếu x=0 thì y=z=0=>x=y=z=0 là 1 bộ giá trị phải tìm.
giả sử x,y,z khác 0 thì theo đề bài \(x+y+z\ne0\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
Thay kết quả vào dãy tỉ số ban đầu, ta được: \(x=\frac{-1}{2};y=\frac{-5}{6};z=\frac{11}{6}\)
Vậy ta có x=y=z =0 hoặc \(x=\frac{-1}{2};y=\frac{-5}{6};z=\frac{11}{6}\)
a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)
Suy ra : x = 2.6 = 12
y = 2.4 = 8
z = 2.5 = 10
b,c,d tương tự
e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
Tới đây bạn làm tương tự a,b,c,d
f tương tự.
g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Bạn áp dụng dãy tỉ số bằng nhau là ra.
h/ Áp dụng dãy tỉ số bằng nhau :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)
Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.
Ta có:
\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Thay tất cả giá trị x,y,z vào M ta được:
\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)
\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)
\(\Rightarrow M=2020+2021=4041\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y-z}{2-3-5}=\frac{2}{-6}=-\frac{1}{3}\)
\(\Rightarrow\begin{cases}x=-\frac{2}{3}\\y=-1\\z=-\frac{5}{3}\end{cases}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y-z}{2-3-5}=\frac{2}{-6}=-\frac{1}{3}\)
+) \(\frac{x}{2}=\frac{-1}{3}\Rightarrow x=\frac{-2}{3}\)
+) \(\frac{y}{3}=\frac{-1}{3}\Rightarrow y=-1\)
+) \(\frac{z}{5}=\frac{-1}{3}\Rightarrow z=\frac{-5}{3}\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(\frac{-2}{3};-1;\frac{-5}{3}\right)\)
Có:
\(3\left(x-y\right)=7\left(y-z\right)=5\left(z-x\right)\)
=> \(\frac{3\left(x-y\right)}{3.7.5}=\frac{7\left(y-z\right)}{3.7.5}=\frac{5\left(z-x\right)}{3.7.5}\)
=> \(\frac{x-y}{35}=\frac{y-z}{15}=\frac{z-x}{21}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{x-y}{35}=\frac{y-z}{15}=\frac{z-x}{21}=\frac{x-y+y-z+z-x}{35+15+21}=\frac{0}{71}=0\)
=> \(x=y=z\)
Suy ra: \(\frac{y-x}{9}=0=\frac{z-y}{14}\)
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(x+y+z=\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{\left(y+z-2\right)+\left(z+x-3\right)+\left(x+y+5\right)}=\frac{x+y+z}{2.\left(x+y+z\right)}=\frac{1}{2}\)
=> 2x = y + z - 2
=> 2x + x = x + y + z -2
3x = \(\frac{1}{2}\) - 2
3x = -\(-1\frac{1}{2}\)
x = \(-\frac{1}{2}\)
2y = z + x - 3
=> 2y + y = x + y + z - 3
3y = \(\frac{1}{2}\) - 3
3y = \(-2\frac{1}{2}\)
y = \(-\frac{5}{6}\)
Thay x = \(-\frac{1}{2}\) và y = \(-\frac{5}{6}\) vào x + y + z = \(\frac{1}{2}\) ta được:
\(-\frac{1}{2}-\frac{5}{6}+z=\frac{1}{2}\)
\(z=\frac{1}{2}+\frac{1}{2}+\frac{5}{6}\)
\(z=1\frac{5}{6}\)
Vậy ...
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y+z-2}=\frac{y}{z+x-3}=\frac{z}{x+y+5}=\frac{x+y+z}{2\left(x+y+z\right)-\left(2+3-5\right)}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow x+y+z=\frac{1}{2}\)
\(\cdot\frac{x}{y+z-2}=\frac{1}{2}\)
\(\Rightarrow2x=y+z-2\)
\(3x=\left(x+y+z\right)-2=\frac{1}{2}-2=-\frac{1}{2}\)
\(x=-\frac{1}{2}:3=-\frac{1}{6}\)
\(\cdot\frac{y}{z+x-3}=\frac{1}{2}\)
\(\Rightarrow2y=x+z-3\)
\(3y=\left(x+y+z\right)-3=\frac{1}{2}-3=-\frac{5}{6}\)
\(y=-\frac{5}{6}:3=-\frac{5}{18}\)
Ta có:
\(x+y+z=\frac{1}{2}\)
\(\left(-\frac{1}{6}\right)+\left(-\frac{5}{18}\right)+z=\frac{1}{2}\)
\(z-\frac{8}{18}=\frac{9}{18}\)
\(\Rightarrow z=\frac{17}{18}\)