Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d\left(G;\left(ABCD\right)\right)=\dfrac{1}{3}d\left(S;\left(ABCD\right)\right)=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{6}\)
\(S_{\Delta ACD}=\dfrac{1}{2}S_{ABCD}=\dfrac{a^2}{2}\)
\(\Rightarrow V=\dfrac{1}{3}.\dfrac{a^2}{2}.\dfrac{a\sqrt{3}}{6}=\dfrac{a^3\sqrt{3}}{36}\)
Số số hạng có trong dãy là:
\(\frac{90-11}{1}+1=80\)(số hạng)
\(11+12+13+14+...+90\)
\(=\frac{\left(90+11\right)\cdot80}{2}\)
\(=4040\)
Đáp số: \(4040\)
Chọn D
Đường thẳng d₁ đi qua điểm M₁ = (3;-1;-1) và có một véctơ chỉ phương là
Đường thẳng d₂ đi qua điểm M₂ = (0;0;1) và có một véctơ chỉ phương là
Do và M₁ ∉ d₁ nên hai đường thẳng d₁ và d₂ song song với nhau.
Gọi (α) là mặt phẳng chứa d₁ và d₂ khi đó (α) có một véctơ pháp tuyến là . Phương trình mặt phẳng (α) là x+y+z-1=0.
Do không cùng phương với nên đường thẳng AB cắt hai đường thẳng d₁ và d₂.
Chọn D
Đường thẳng d1 đi qua điểm M1 (3; -1; -1) và có một véctơ chỉ phương là
Đường thẳng d2 đi qua điểm M2 (0; 0; 1) và có một véctơ chỉ phương là
Do và M1 ∉ d1 nên hai đường thẳng d1 và d2 song song với nhau.
Gọi (α) là mặt phẳng chứa d1 và d2 khi đó (α) có một véctơ pháp tuyến là
Phương trình mặt phẳng (α) là x + y + z -1 = 0
Gọi A = d3 ∩ (α) thì A (1; -1; 1)
Gọi B = d4 ∩ (α) thì B (-1; 2; 0)
Do không cùng phương với nên đường thẳng AB cắt hai đường thẳng d1 và d2.
Chọn A
Ta có d1 song song d2, phương trình mặt phẳng chứa hai đường thẳng d1, d2 là
Mà cùng phương với véc-tơ chỉ phương của hai đường thẳng d1, d2 nên không tồn tại đường thẳng nào đồng thời cắt cả bốn đường thẳng trên.
Câu 11:
Ta có:
\(y=x^3-3(m+1)x^2+2(m^2+4m+1)x-4m(m+1)\)
\(=x^2(x-2)-3mx(x-2)-x(x-2)+2m(x-2)+2m^2(x-2)\)
\(\Leftrightarrow y=(x-2)[x^2-x(3m+1)+2m^2+2m]\)
Ta thấy, pt \(y=0\) có bao nhiêu nghiệm thì có bấy nhiêu điểm là giao của $y$ với trục hoành.
Thấy \(x=2\) là một nghiệm của pt thỏa mãn lớn hơn 1. Vậy ta cần pt \(x^2-x(3m+1)+2m^2+2m=0\) có hai nghiệm phân biệt khác $2$ và lớn hơn 1
Trước tiên, để pt trên có hai nghiệm phân biệt khác $2$ thì:
\(\left\{\begin{matrix} 2^2-2(3m+1)+2m^2+2m\neq 0\\ \Delta=(3m+1)^2-4(2m^2+2m)>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2(m-1)^2\neq 0\\ (m-1)^2>0\end{matrix}\right.\Leftrightarrow m\neq 1(1)\)
Theo định lý Viete, giả sử $x_1,x_2$ là hai nghiệm của pt trên thì \(\left\{\begin{matrix} x_1+x_2=3m+1\\ x_1x_2=2m^2+2m\end{matrix}\right.\)
Để pt có hai nghiệm lớn hơn 1 thì: \(\left\{\begin{matrix} (x_1-1)(x_2-1)>0\\ x_1+x_2>2 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 2m^2+2m-(3m+1)+1>0\\ 3m+1>2\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2m^2-m=m(2m-1)>0\\ m>\frac{1}{3}\end{matrix}\right.\Leftrightarrow m>1\) hoặc \(\frac{1}{3}< m< \frac{1}{2}\)
=2 nhé
bằng 2