K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Bài 1 

1, Ta có \(A=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)

\(A=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)

\(A=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)

\(A=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+....+\frac{1}{25.28}\right)\)

\(A=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)

\(A=5.\left(\frac{1}{4}-\frac{1}{28}\right)=5.\frac{3}{14}=\frac{15}{14}\)

Vậy \(A=\frac{15}{14}\)

2, 

a) \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=\frac{3}{n-5}\)

Suy ra để A có giá trị nguyên thì \(n-5\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Khi đó \(n-5\in\left\{1;-1;3;-3\right\}\)

Suy ra \(n\in\left\{6;4;8;2\right\}\)

Vậy ......

b) Ta có : \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=2+\frac{3}{n-5}\)

Để A có giá trị lớn nhất \(\Leftrightarrow\frac{2n-7}{n-5}\)lớn nhất \(\Leftrightarrow2+\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow n=6\)

Khi đó A = 5 

 Vậy A đạt GTLN khi và chỉ khi n = 6

17 tháng 9 2017

a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)

\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)

*\(n+3=1\Rightarrow n=-2\)

*\(n+3=-1\Rightarrow n=-4\)

*\(n+3=11\Rightarrow n=8\)

*\(n+3=-11\Rightarrow n=-14\)

16 tháng 5 2016

1) \(D=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)

\(D=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+.....+\frac{5}{700}\)

\(D=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+......+\frac{5}{25.28}\)

\(D=\frac{5}{3}.\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+.....+\frac{3}{25.28}\right)\)

\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{25}-\frac{1}{28}\right)\)

\(D=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)=\frac{5}{3}.\frac{6}{28}=\frac{5}{14}\)

\(E=\frac{1}{1+2}+\frac{1}{1+2+3}+.......+\frac{1}{1+2+3+....+24}\)

Ta có: \(1+2=\)\(\frac{2.\left(2+1\right)}{2}=3\);\(1+2+3=\frac{3.\left(3+1\right)}{2}=6\);\(1+2+3+...+24=\frac{24.\left(24+1\right)}{2}=300\)

\(E=\frac{1}{3}+\frac{1}{6}+....+\frac{1}{300}\)

=>\(\frac{1}{2}E=\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{600}=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{24.25}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{24}-\frac{1}{25}=\frac{1}{2}-\frac{1}{25}=\frac{23}{50}\)

=>\(E=\frac{46}{50}\)

Vậy \(\frac{D}{E}=\frac{5}{14}:\frac{46}{50}=\frac{250}{644}=\frac{125}{322}\)

16 tháng 5 2016

2) Theo t/c dãy tỉ số=nhau:

\(\frac{a+b}{a+c}=\frac{a-b}{a-c}=\frac{a+b-\left(a-b\right)}{a+c-\left(a-c\right)}=\frac{a+b-a+b}{a+c-a+c}=\frac{2b}{2c}=1\)

=>b=c

do đó \(A=\frac{10b^2+9bc+c^2}{2b^2+bc+2c^2}=\frac{10b^2+9b^2+b^2}{2b^2+b^2+2b^2}=\frac{\left(10+9+1\right).b^2}{\left(2+1+2\right).b^2}=4\)

31 tháng 5 2018

Bài 1: 

a) ta có: \(A=\frac{2n-1}{n-3}=\frac{2n-6+5}{n-3}=\frac{2.\left(n-3\right)+5}{n-3}=\frac{2.\left(n-3\right)}{n-3}+\frac{5}{n-3}\)\(=2+\frac{5}{n-3}\)

Để A có giá trị nguyên

\(\Rightarrow\frac{5}{n-3}\in z\)

\(\Rightarrow5⋮n-3\Rightarrow n-3\inƯ_{\left(5\right)}=\left(5;-5;1;-1\right)\)

nếu n-3 = 5 => n = 8 (TM)

n-3 = -5 => n= -2 (TM)

n-3 = 1 => n = 4 (TM)

n-3 = -1 => n = 2 (TM)

KL: \(n\in\left(8;-2;4;2\right)\)

b) ta có: \(A=2+\frac{5}{n-3}\) ( pa)

Để A đạt giá trị lớn nhất

=>  \(\frac{5}{n-3}\le5\)

Dấu "=" xảy ra khi

\(\frac{5}{n-3}=5\)

\(\Rightarrow n-3=5:5\)

\(n-3=1\)

\(n=4\)

KL: n =4 để A đạt giá trị lớn nhất

Bài 2 bn làm tương tự nha!

17 tháng 9 2015

Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

8 tháng 8 2016

Để A đạt GTLN 

suy ra : 3n + 2 lớn nhất ; 2n - 1 nhỏ nhất 

 SAU ĐÓ TỰ GIẢI TIẾP NHÁ

8 tháng 7 2016

a) A \(=\frac{2n-1}{n-3}=\frac{2n-6}{n-3}+\frac{5}{n-3}\) nguyên

<=> n - 3 thuộc Ư(5) = {-5; -1; 1; 5}

<=> n thuộc {-2; 2; 4; 8}

b) A lớn nhất <=> \(\frac{5}{n-3}\) lớn nhất <=> n - 3 là số nguyên dương nhỏ nhất

<=> n - 3 = 1 <=> n = 4

5 tháng 7 2016

A=\(\frac{2n-1}{n-3}\)

a)Để A có giá trị nguyên thì 2n-1 phải chia hết cho n-3

2n-1

=2n-6+6-1

=2.(n-3)+5

n-3 chia hết cho n-3 nên 2(n-3) chia hết cho n-3

Vậy 5 cũng phải chia hết cho n-3

+n-3=1=>n=4

+n-3=5=>n=8

+n-3=-1=>n=2

+n-3=-5=>n=-2

Vậy n thuộc -2;2;8;4

b)Dễ thấy,để A có giá trị lớn nhất n=8

Chúc em học tốt^^