K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 14:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{E}}{4}=\dfrac{\widehat{F}}{7}=\dfrac{360^0}{15}=24^0\)

Do đó: \(\widehat{A}=24^0;\widehat{B}=72^0;\widehat{C}=96^0;\widehat{F}=168^0\)

 

27 tháng 6 2019

ta có    góc A =góc B-200

            góc C= x góc A=3 ( góc B-200)

            góc D=  góc C+200=  3( góc B -200)+200

mà góc A+góc B+góc C+ góc D=3600

=> góc B-200   +góc B +3x góc B   -400  +3x góc B -600 =3600

   8 góc B   =4800

góc B=600

=> góc A=400

  góc C =1200

 góc D=1400

b)  tứ giác ABCD có    góc A+góc D =1800   => AB//DC ( tổng 2 góc trong cùng phía =1800)

=> ABCD là hình thang

                                              

24 tháng 9 2021

Cho tứ giác ABCD, biết :

a)     Tính các góc của tứ giác ABCD

b)    Tứ giác ABCD có phải  hình thang không? Vì sao?

27 tháng 7 2020

Bài này lạ quá. Hình vẽ là một tứ giác lõm.

Mình hướng dẫn ngắn gọn lời giải

a, Hai tam giác trên bằng nhau theo trường hợp cạnh - cạnh - cạnh

b, Có góc QMN = 80 độ

=> \(\widehat{PMQ}=\widehat{QMN}=\frac{360^o-80^o}{2}=140^o\)

CÓ: \(\widehat{QPM}=\widehat{MPN=\frac{60^o}{2}}=30^o\)

Xét tam giác PMQ biết góc PMQ =140 độ, góc PQM = 30 độ

=> Góc PQM = 10 độ

Mà góc PQM = góc PNM => Góc PNM = 10 độ

d, Xét tam giác QPM cân ở P ( PQ = PN)

=> Đường phân giác PM đồng thời là đường trung trực của đoạn thẳng NQ

e, Xét tam giác PQM có QN là đường trung trực của PM

=> Tam giác PQM cân ỏ Q => QP=PN=QM

Mà QM =MN

=> Tứ giác MNQP có 4 cạnh bằng nhau.

Bài 1)

a) Vì A: B:C:D = 1:2:3:4

=> A= B/2 = C/3=D/4

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

A = 36 độ

B= 72 độ

C=108 độ

D= 144 độ

b) Ta có :

A + D = 36 + 144 = 180 độ(1)

B+C = 72 + 108 = 180 độ(2)

Từ (1) và (2) ta có:

=> AB //CD (dpcm)

c) Ta có :

CDE + ADC = 180 độ(kề bù) 

=> CDE = 180 - 144 = 36

Ta có :

BCD + DCE = 180 độ ( kề bù) 

=> DCE = 180 - 108 = 72 

Xét ∆CDE ta có :

CDE + DCE + DEC = 180 (  tổng 3 góc trong ∆)

=> DEC = 180 - 72 - 36 = 72 độ 

Bài 2) 

a) Ta có ABCD có : 

A + B + C + D = 360 độ

Mà C = 80 độ

D= 70 độ

=> A+ B = 360 - 80 - 70 = 210 độ

Ta có AI là pg  góc A 

BI là pg góc B 

=> DAI = BAI = A/2 

=> ABI = CBI = B/2

=> BAI + ABI = A + B /2 

=> BAI + ABI = 210/2 = 105

Xét ∆IAB ta có :

IAB + ABI + AIB = 180 độ

=> AIB = 180 - 105

=> AIB = 75 độ

=> 

3 tháng 3 2020

a, có số đo 4 góc của tứ giác ABCD lafn lượt tỉ lệ với 5, 8, 13, 10

\(\Rightarrow\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\)

\(\Rightarrow\frac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{5+8+13+10}=\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\) mà ^A + ^B + ^C + ^D = 360 do tứ giác ... 

\(\Rightarrow\frac{360}{36}=10=\frac{\widehat{A}}{5}=\frac{\widehat{B}}{8}=\frac{\widehat{C}}{13}=\frac{\widehat{D}}{10}\)

\(\Rightarrow\widehat{A}=50;\widehat{B}=80;\widehat{C}=130;\widehat{D}=100\)

b, xét ΔABF có : ^ABF + ^BAF  + AFB = 180 (định lí)

^ABF = 50 ; ^ABF = 80 (câu a)

=> ^AFB = 50 

FM là phân giác của ^AFB 

=> ^MFD = ^AFB : 2 (tính chất)

=> ^MFD = 50 : 2 = 25

^ADC + ^CDF = 180 (kề bù) mà ^ADC = 100 (câu a) => ^CDF = 80

ΔDMF có : ^MDA + ^DFM + ^DMF = 180 (định lí)

=> ^DMF = 75                        (1)

ΔADE có : ^ADE + ^DAE + ^AED = 180 (Định lí)

^EAD = 50; ^ADE = 100 

=> ^AED = 30                                      và (1)

ΔENM có : ^ENM + ^EMN + ^MNE = 180

=> ^ENM = 75 = ^EMN 

=>ΔEMN cân tại E mà EO là pg của ^NEM (gt)

=> EO đồng thời là trung tuyến của ΔNEM (định lí)

=> O là trung điểm của MN (định nghĩa)

hình tự kẻ