K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

Giả sử độ dài 2 đoạn thẳng của cạnh huyền đc chia ra là a và b (a>b>0)

Theo đề ta có hpt: ab=576 và a-b=14=>a=14+b

Vậy ta có (14+b)b=576=> b2+14b-576=0

Giải pt này ta nhận già trị b=18 =>a=32

Cạnh huyền có độ dài là a+b=50

12 tháng 7 2019

#)Giải : (Nếu là pt hoặc hệ pt thì mk k bít nhưng mk bít giải theo cách này)

Gọi x (cm) là một phần của cạnh huyền

=> Phần còn lại của cạnh huyền là x + 14 (cm)

Áp dụng tính chất đường cao trong tam giác vuông :

\(24^2=x\left(x+14\right)\Rightarrow x^2+14x-24^2=0\Rightarrow x=18\)

=> Phần còn lại của cạnh huyền là 18 + 14 = 32 (cm)

=> Canh huyền dài 32 + 18 = 50 (cm)

NV
9 tháng 1 2023

Gọi độ dài đoạn thẳng ngắn hơn được chia trên cạnh huyền là x (cm) với x>0

\(\Rightarrow\) Độ dài đoạn còn lại là \(x+14\)

Áp dụng hệ thức lượng trong tam giác vuông:

\(24^2=x\left(x+14\right)\)

\(\Leftrightarrow x^2+14x-576=0\Rightarrow\left[{}\begin{matrix}x=18\\x=-32\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\) Độ dài cạnh huyền là: \(18+\left(18+14\right)=50\left(cm\right)\)

Diện tích tam giác: \(S=\dfrac{1}{2}.24.50=600\left(cm^2\right)\)

Gọi độ dài hình chiếu thứ nhất là x

=>Độ dài hình chiếu thứ 2 là x+14

Theo đề, ta có: x^2+14x=24^2=576

=>x^2+14x-576=0

=>x=18

=>Độ dai cạnh huyền là 18+18+14=50cm

\(a=\sqrt{18\cdot50}=30\left(cm\right)\)

\(b=\sqrt{32\cdot50}=40\left(cm\right)\)

S=1/2*30*40=15*40=600cm2

9 tháng 9 2016

Bài 1:

3 4 x y z

Áp dụng đl pytago ta có:

\(\left(y+z\right)^2=3^2+4^2=9+16=25\)

=> y + z = 5

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(3^2=y\left(y+z\right)=5y\)

=>\(y=\frac{3^2}{5}=1,8\)

Có: y + z =5

=>z=5-y=5-1,8=3,2

Áp dụng hên thức liên quan tới đường cao:

\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)

=>\(x=\frac{12}{5}\)

2 tháng 9 2019

Bài 2:

B A C H 1cm 2cm x y

Ta có: △ABC vuông tại A và có đg cao AH

AB2 = BH.BC ( hệ thức lượng )

⇒ x2 = 1 . 3

⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)

AC2 = CH.BC

⇒ y2 = 2 . 3

⇒ y = \(\sqrt{6}\) cm

25 tháng 3 2019

gọi độ dài hai cạnh góc vuông là x và y

=> \(\hept{\begin{cases}x^2+y^2=13^2=169\\\frac{1}{2}\left(x+1\right)\left(y-2\right)=\frac{1}{2}xy\end{cases}\Rightarrow\hept{\begin{cases}x^2+y^2=169\\y=2x+2\end{cases}\Rightarrow}\hept{\begin{cases}x^2+\left(2x+2\right)^2=169\\y=2x+2\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}5x^2+8x-165=0\\y=2x+2\end{cases}\Rightarrow\hept{\begin{cases}x=5\\y=12\end{cases}}}\)

25 tháng 3 2019

bạn giải đầy đủ bước cuối dc ko

2 tháng 8 2018

A B C H 24 7

Cho tam giác ABC vuông tại A, AH là đường cao. AB = 24cm, AC = 7cm.

Áp dụng định lý Pytago ta có: \(BC=\sqrt{AC^2+AB^2}=\sqrt{7^2+24^2}=25.\)

Áp dụng hệ thức lượng ta có:

\(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{24.7}{25}=6.72\)

\(AC^2=HC.BC\Rightarrow HC=\frac{AC^2}{BC}=\frac{7^2}{25}=1,96\)

\(\Rightarrow HB=BC-HC=25-1.96=23.04\)

18 tháng 7 2021

Giả sử tam giác ABC vuông tại A và đường cao AH chia tam giác thành 2 phần có diện tích là \(54cm^2\) và \(96cm^2\).

Giả sử \(S_{AHB}=54cm^2,S_{AHC}=96cm^2\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{2}.AH.HB=54\\\dfrac{1}{2}.AH.HC=96\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AH.HB=108\\AH.HC=192\end{matrix}\right.\)

\(\Rightarrow AH^2.HB.HC=20736\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH^2=HB.HC\)

\(\Rightarrow AH^2.HB.HC=AH^2.AH^2=AH^4=20736\Rightarrow AH=12\left(cm\right)\)

\(\Rightarrow\left\{{}\begin{matrix}HB=\dfrac{108}{12}=9\\HC=\dfrac{192}{12}=16\end{matrix}\right.\Rightarrow BC=HB+HC=9+16=25\left(cm\right)\)