Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\frac{1}{9}+\frac{1}{16}}\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)
=1+3+5+7+9
=25
b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)
=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)
=\(\dfrac{15}{12}\)
c) =0,2+0.3+0,4
= 0.9
d) =9-8+7
=8
j) =1,2-1,3+1.4
= (-0,1)+1,4
=1,4
g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)
= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)
= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)
=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)
= \(\dfrac{71}{20}\)
Nhớ tick cho mk nha~
\(a,\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)
\(=\frac{-5}{9}.\frac{-1}{10}\)
\(=\frac{1}{18}\)
\(b,2^8:2^5+3^3.2-12\)
\(=2^3+9.2-12\)
\(=8+18-12\)
\(=26-12\)
\(=14\)
Câu c,d em chưa học nên không biết làm ạ, mong mọi người thông cảm!!!
Sửa lại câu b
\(=2^3+27.2-12\)
\(=8+54-12\)
\(=62-12\)
\(=50\)
a) \(\left(\frac{2^2}{5}\right)+5\frac{1}{2}.\left(4,5-2,5\right)+\frac{2^3}{-4}\)
\(=\frac{4}{5}+\frac{11}{2}.2+\frac{-8}{4}\)
\(=\frac{4}{5}+11-2\)
\(=\frac{4}{5}+9\)
\(=\frac{49}{9}\)
b) \(\left(-2^3\right)+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
\(=-8+4-5+64\)
= 55
c) \(\frac{\sqrt{3^2+\sqrt{39}^2}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)
\(=\frac{\sqrt{9+39}}{91-\sqrt{49}}\)
\(=\frac{\sqrt{48}}{91-7}\)
\(=\frac{4\sqrt{3}}{84}\)
\(=\frac{\sqrt{3}}{41}\)
d) Xem lại đề nhé em!
e) \(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
\(=5-3.\frac{2}{3}\)
= 5 - 2
= 3
h) \(\left(-3^2\right).\frac{1}{3}-\sqrt{49}+\left(5^3\right):\sqrt{25}\)
\(=-9.\frac{1}{3}-7+125:5\)
\(=-3-7+25\)
= 15
a) \(C=3\cdot\sqrt{25}-3\cdot\sqrt{\frac{1}{9}}\)
\(C=3\cdot5-3\cdot\frac{1}{3}\)
\(C=15-1=14\)
b) \(D=-4\sqrt{\frac{4}{25}}+3\sqrt{0,16}-2\sqrt{0,04}\)
\(D=-4\cdot\frac{2}{5}+3\cdot\frac{2}{5}-2\cdot\frac{1}{5}\)
\(D=\frac{1}{5}\cdot\left(-8+6-2\right)\)
\(D=\frac{1}{5}\cdot\left(-4\right)=-\frac{4}{5}\)