K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

a.

\(A=1+3+3^2+3^3+...+3^n\)

\(3A=3+3^2+3^3+3^4+...+3^{n+1}\)

\(3A-A=\left(3+3^2+3^3+3^4+...+3^{n+1}\right)-\left(1+3+3^2+3^3+...+3^n\right)\)

\(2A=3^{n+1}-1\)

\(A=\frac{3^{n+1}-1}{2}\)

b.

\(B=\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{99}}+\frac{1}{10^{100}}\)

\(10B=10+\frac{1}{10}+\frac{1}{10^2}+...+\frac{1}{10^{98}}+\frac{1}{10^{99}}\)

\(10B-B=\left(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+...+\frac{1}{10^{99}}+\frac{1}{10^{100}}\right)-\left(10+\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^{98}}+\frac{1}{10^{99}}\right)\)

\(9B=\frac{1}{10^{100}}-10\)

\(B=\frac{\frac{1}{10^{100}}-10}{9}\)

 

13 tháng 11 2016

help me

25 tháng 4 2017

sao nhiều dữ vậy

20 tháng 7 2019

mk doan la` de sai, sua: \(\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)

\(=\frac{3^7.\left(3^2-2^3\right)+2^{10}.\left(3^2-2^3\right)}{3^7.\left(3^3-2^2\right)+2^{10}.\left(3^3-2^2\right)}=\frac{3^7+2^{10}}{\left(3^7+2^{10}\right).24}=\frac{1}{24}\)

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

Bài 1 :

    \(a+b=3.\left(a-b\right)=\)\(2\frac{a}{b}\)

\(\Rightarrow a+b=3.\left(a-b\right)\)

\(\Rightarrow a+b=3a-3b\)

\(\Rightarrow3a-3b-a-b=0\)

\(\Rightarrow2a-4b=0\)

\(\Rightarrow2.\left(a-2b\right)=0\)

\(\Rightarrow\hept{\begin{cases}a-2b=0\\a=2b\end{cases}}\)

Ta có : \(a+b=\frac{2a}{b}\)

Thay \(a=2b\) vào 

\(\Rightarrow2b+b=\frac{2.23}{b}\)

\(\Rightarrow3b=\frac{4b}{b}\Rightarrow3b=4\)

\(\Rightarrow b=\frac{4}{3}\Rightarrow a=2.\frac{4}{3}=\frac{8}{3}\)

Vậy \(a=\frac{8}{3}\) và \(b=\frac{4}{3}\)

Chúc bạn học tốt ( -_- )

Bài 2 :

\(B=50+\frac{50}{3}+\frac{25}{3}+\frac{20}{4}+\frac{10}{5}+\frac{100}{6.7}+...+\)\(\frac{100}{98.99}+\frac{1}{99}\)

\(B=\frac{100}{2}+\frac{100}{6}+\frac{100}{12}+\frac{100}{20}+\frac{100}{30}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{100}{9900}\)

\(B=\frac{100}{1.2}+\frac{100}{2.3}+\frac{100}{3.4}+\frac{100}{4.5}+\frac{100}{5.6}+\frac{100}{6.7}+...+\frac{100}{98.99}+\frac{100}{99.100}\)

\(B=100.\frac{100}{2}+\frac{100}{2}-\frac{1}{3}+\frac{100}{3}-\frac{100}{4}+\frac{100}{4}-\frac{100}{5}+\frac{100}{5}-\frac{100}{6}+\frac{100}{6}\)\(-\frac{100}{7}+...+\frac{100}{98}+\frac{100}{99}+\frac{100}{99}-1\)

\(B=100-1\)

\(B=99\)

Chúc bạn học tốt ( -_- )