Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10.\frac{\left(2^2\right)^6.\left(3^3\right)^5+\left(2.3\right)^9.\left(2^3.3.5\right)}{\left(2^4\right)^3.3^{12}-\left(2.3\right)^{11}}\)
\(=10.\frac{2^{12}.3^{15}+2^{12}.3^{10}.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(=10.\frac{2^{12}.3^{10}\left(3^5+1.5\right)}{2^{11}.3^{11}\left(2.3-1\right)}\)
\(=10\frac{2\left(3^5+5\right)}{3.5}\)
\(=10.\frac{496}{15}\)
\(=\frac{992}{3}\)
Study well
10.\(\frac{241864704+1209323520}{2176782336-6^{11}}\)
=10.\(\frac{362797224}{1813985280}\)
=2,000000926
\(A=\dfrac{5}{7}.\dfrac{5}{11}+\dfrac{5}{7}.\dfrac{8}{11}-\dfrac{5}{7}.\dfrac{2}{11}\)
\(A=\dfrac{5}{7}.\left(\dfrac{5}{11}+\dfrac{8}{11}-\dfrac{2}{11}\right)\)
\(A=\dfrac{5}{7}.\dfrac{5+8-2}{11}\)
\(A=\dfrac{5}{7}.\dfrac{11}{11}\)
\(A=\dfrac{5}{7}.1=\dfrac{5}{7}\)
\(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{35}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{63}\)
\(B=\dfrac{95}{72}\)
\(C=\dfrac{4^6.9^5+6^9.120}{8^4-3^{12}-6^{11}}\)
\(C=\dfrac{\left(2^2\right)^3.\left(3^2\right)^5+\left(2.3\right)^9.2^3.3.5}{\left(2^3\right)^4.3^{12}-\left(2.3\right)^{11}}\)
\(C=\dfrac{2^{12}.3^{10}+2^9.3^9.2^3.3.5}{2^{12}.3^{12}-2^{11}.3^{11}}\)
\(C=\dfrac{2^{12}.3^{10}.\left(1+5\right)}{2^{11}.3^{11}.5}\)
\(C=\dfrac{2.6}{5.3}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\dfrac{\left(17\dfrac{8}{19}-16\dfrac{9}{18}\right).\left(17,5+16\dfrac{17}{51}-32\dfrac{15}{22}\right)}{\dfrac{7}{3.13}+\dfrac{7}{13.23}+\dfrac{7}{23.33}}\)
=\(\dfrac{\dfrac{35}{38}.\dfrac{38}{33}}{\dfrac{7}{10}\left(\dfrac{1}{3}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{23}+\dfrac{1}{23}-\dfrac{1}{33}\right)}\)
=\(\dfrac{\dfrac{35}{33}}{\dfrac{7}{10}.\left(\dfrac{1}{3}-\dfrac{1}{33}\right)}\)
=\(\dfrac{\dfrac{35}{33}}{\dfrac{7}{10}.\dfrac{10}{33}}\)
=\(\dfrac{\dfrac{35}{33}}{\dfrac{7}{33}}\)
=\(\dfrac{35}{33}:\dfrac{7}{33}\)
=\(\dfrac{35}{33}.\dfrac{33}{7}\)
=5
\(4^6.9^5+6^9.120:8^4.3^{12}+6^{11}=\frac{4^6.9^5+6^9.120}{8^4.3^{12}+6^{11}}=\frac{ \left(2^2\right)^6.\left(3^2\right)^5+6^9.6.20}{2^3.3^{12}+6^9.6.6}=\frac{2^{12}.3^{10}+20}{2^3.3^{12}+6}=\frac{2^9+20}{3^2+6}\)
\(\frac{2^9+20}{3^2+6}=\frac{512+20}{9+6}=\frac{532}{15}\)