Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của ✨♔♕ Saiko ♕♔✨ - Toán lớp 6 - Học toán với OnlineMath
a ) 131313=13x10101
565656=56x10101
tương tự rồi sau đó cậu giảm ước cho tử và mẫu là được
b) cậu suy ra từ giả thiết được a,b,c,d => tính C = ...
Cám ơn cậu nhìu nhé!Mình kết bạn được không?Để hỏi bài cho dễ nhé!
Bài 1:
\(\Leftrightarrow\left(\dfrac{1}{11}-\dfrac{1}{21}\right)\cdot462-\left[2.04:\left(x+1.05\right)\right]:0.12=19\)
\(\Leftrightarrow\left[2.04:\left(x+1.05\right)\right]:0.12=1\)
\(\Leftrightarrow2.04:\left(x+1.05\right)=0.12\)
\(\Leftrightarrow x+1.05=17\)
hay x=15,85
Câu hỏi của ✨♔♕ Saiko ♕♔✨ - Toán lớp 6 - Học toán với OnlineMath
Câu 1:
a) A tự tính
b) gợi ý: \(\frac{131313}{565656}=\frac{10101.13}{10101.56}=\frac{13}{56}\)
c) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{2a+3b+4c+5d}=1\)
Ta có: \(C=\frac{2a}{3b}+\frac{3b}{4c}+\frac{4c}{5d}+\frac{5d}{2a}=1+1+1+1=4\)
Vậy C = 4
Câu 2:
a) \(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right)^2=16\)
\(\Rightarrow\left[\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{3;-5\right\}\)
b) \(x:\left(9\frac{1}{2}-\frac{3}{2}\right)=\frac{0,4+\frac{2}{9}-\frac{2}{11}}{1,6+\frac{8}{9}-\frac{8}{11}}\)
\(\Rightarrow x:\left(\frac{19}{2}-\frac{3}{2}\right)=\frac{2\left(0,2+\frac{1}{9}-\frac{1}{11}\right)}{8\left(0,2+\frac{1}{9}-\frac{1}{11}\right)}\)
\(\Rightarrow\frac{x}{8}=\frac{2}{8}\)
\(\Rightarrow x=2\)
Vậy x = 2
Câu 3:
a) tìm x, y bằng cách \(\left[\begin{matrix}\overline{34x5y}⋮9\\\overline{34x5y}⋮4\end{matrix}\right.\)
Lưu ý: số chia hết cho 4 có 2 chữ số cuối của nó chia hết cho 4
b) Ta có: \(A=\frac{-9}{10^{2010}}+\frac{-19}{10^{2011}}=\frac{-90}{10^{2011}}+\frac{-19}{10^{2011}}=\frac{-109}{10^{2011}}\)
\(B=\frac{-9}{10^{2011}}+\frac{-19}{10^{2010}}=\frac{-9}{10^{2011}}+\frac{-190}{10^{2011}}=\frac{-199}{10^{2011}}\)
Vì \(\frac{-109}{10^{2011}}>\frac{-199}{10^{2011}}\) nên A > B
Vậy A > B
\(B=70\cdot\left(\frac{131313}{565656}+\frac{131313}{727272}+\frac{131313}{909090}\right)\)
\(B=70\cdot\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\right]\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\right)\right]\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\right]\)
\(B=70\cdot\left[13\cdot\left(\frac{1}{7}-\frac{1}{10}\right)\right]\)
\(B=70\cdot13\cdot\frac{3}{70}\)
\(B=70\cdot\frac{3}{70}\cdot13\)
\(B=3\cdot13\)
\(B=39\)
a) (-1)^a =1 với a chẵn, (-1)^a =-1 với a lẻ
\(A=\left(-1\right)^{1+2+3+4+..+2010+2011}=\left(-1\right)^{\frac{2011+1}{2}.2011}=\left(-1\right)^{1006.2011}=1\)
Vì 1006 là số chẵn => 1006.2011 là số chẵn
b) \(B=70.\left(\frac{13.10101}{56.10101}+\frac{13.10101}{72.10101}+\frac{13.10101}{90.10101}\right)=70.\left(\frac{13}{56}+\frac{13}{72}+\frac{13}{90}\right)=3.13=39\)
c) Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=\frac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
=> C=4