K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Bài 2:

a.

\(3x(x-4y)-\frac{12}{5}y(y-5x)=3x^2-12xy-\frac{12}{5}y^2+12xy\)

\(=3x^2-\frac{12}{5}y^2=3.4^2-\frac{12}{5}.(-5)^2=-12\)

b.

\(u=\frac{-1}{3}; v=\frac{-2}{3}\Rightarrow u+v+1=0\)

\(2u(1+u-v)-v(1-2u+v)=2u(1+u+v-2v)+v(1+u+v-3u)\)

\(=2u.(-2v)+v(-3u)=-4uv-3uv=-7uv=-7.\frac{-1}{3}.\frac{-2}{3}=\frac{-14}{9}\)

 

AH
Akai Haruma
Giáo viên
13 tháng 9 2021

Bài 1:

\(A=x^6-(x^6-x^5)-(x^5+x^4)+(x^4-x^3)+(x^3+x^2)-(x^2+x)+1\)

\(=-x+1=-(x-1)=-(999-1)=-998\)

2 tháng 7 2018

1/ \(4x\left(x-1\right)-x\left(4x-2\right)=5\left(x-3\right)\)

\(\Leftrightarrow4x^2-4x-4x^2+2x=5x-15\)

\(\Leftrightarrow-2x=5x-15\)

\(\Leftrightarrow7x=-15\)

\(\Leftrightarrow x=-\dfrac{15}{7}\)

Vậy ..

2/ Đặt : \(\dfrac{1}{105}=x;\dfrac{1}{651}=y\left(x,y>0\right)\)

Ta có :

\(A=2\dfrac{1}{315}.\dfrac{1}{651}-\dfrac{1}{105}.3\dfrac{650}{651}-\dfrac{4}{315-651}+\dfrac{4}{105}\)

\(=\left(2+\dfrac{1}{3.105}\right).\dfrac{1}{651}-\dfrac{1}{105}\left(3+\dfrac{651-1}{651}\right)+\dfrac{4}{105}\)

\(=\left(2+\dfrac{1}{3}.\dfrac{1}{105}\right).\dfrac{1}{651}-\dfrac{1}{105}\left(4-\dfrac{1}{651}\right)-\left(\dfrac{3}{3.105.651}+\dfrac{1}{3.105.651}\right)+\dfrac{4}{105}\)

\(=\left(2+\dfrac{1}{3}x\right)y-x\left(4-y\right)-xy-\dfrac{1}{3}xy+4x\)

\(=2y+\dfrac{1}{3}xy-4x+xy-xy-\dfrac{1}{3}xy+4x\)

\(=2y\)

\(=\dfrac{2}{651}\)

Có sửa lại đề 1 chút á :>

a: Ta có: x=31

nên x-1=30

Ta có: \(A=x^3-30x^2-31x+1\)

\(=x^3-x^2\left(x-1\right)-x^2+1\)

\(=x^3-x^3+x^2-x^2+1\)

=1

c: Ta có: x=16

nên x+1=17

Ta có: \(C=x^4-17x^3+17x^2-17x+20\)

\(=x^4-x^3\left(x+1\right)+x^2\left(x+1\right)-x\left(x+1\right)+20\)

\(=x^4-x^4-x^3+x^3+x^2-x^2-x+20\)

\(=20-x=4\)

d: Ta có: x=12

nên x+1=13

Ta có: \(D=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\)

\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+10\)

\(=10-x\)

=-2

d: Ta có: x=12

nên x+1=13

Ta có: \(D=x^{10}-13x^9+13x^8-13x^7+...+13x^2-13x+10\)

\(=x^{10}-x^9\left(x+1\right)+x^8\left(x+1\right)-x^7\left(x+1\right)+...+x^2\left(x+1\right)-x\left(x+1\right)+10\)

\(=x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2-x+1+9\)

\(=-x+10=-2\)