K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2017

từ a/(b+c)= b/(a+c)=c/(a+b) suy ra được 2 trường hợp: 

a=b=c thế vào tìm ra kết quả là 3/2                     hoặc a+b+c=0 thế vào tìm được kết quả là -3

30 tháng 10 2017

đặt P = \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)

Cộng 1 vào mỗi tỉ số , ta được :

\(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)( 1 )

Xét a + b + c = 0 \(\Rightarrow\)a + b = -c ; a + c = -b ; b + c = -a

\(\Rightarrow P=\frac{a}{-a}+\frac{b}{-b}+\frac{c}{-c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)

Xét a + b + c \(\ne\)0 thì từ ( 1 ) , ta có :

a = b = c \(\Rightarrow\)P = \(\frac{3}{2}\)

15 tháng 7 2017

\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{8}=\frac{b}{12}\)

\(\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{b}{12}=\frac{c}{15}\) 

\(\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\) 

Áp dụng tính chất dãy tỉ số bằng nhau , ta đươc:

\(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-2c}{8+12-30}=\frac{10}{-10}=-1\) 

\(\Rightarrow a=-1.8=-8\) 

\(b=-1.12=-12\) 

\(c=-1.15=-15\)

15 tháng 7 2017

Tks bn nha! Mk tinh nham.

BACDH

     +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

BACDH

  +   Xét ▲BCD cân tại D có DH là đường trung tuyến => DH chính là đường cao của ▲BCD

=>  DH \(\perp\)CD  

     +    Áp dụng định lý Pitago vào ▲vuông DHC có : 

                 DC2 = DH2 + CH2   (1)

    +   Xét ▲vuông ABC có :  AH là đường trung tuyến ứng vs cạnh huyền.

=>   AH = \(\frac{BC}{2}\)=CH (2)

     Từ (1) và (2) có :

                DC2 = DH2 + CH2 = DH2 + AH2   ( đpcm )

12 tháng 10 2017

cho a,b,c là số thực khác 0 ak?

Theo đề, ta có: 

\(\left\{{}\begin{matrix}\dfrac{a}{-3}=\dfrac{b}{4}\\\dfrac{b}{3}=\dfrac{c}{-2}\end{matrix}\right.\Leftrightarrow\dfrac{a}{-9}=\dfrac{b}{12}=\dfrac{c}{-8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{-9}=\dfrac{b}{12}=\dfrac{c}{-8}=\dfrac{5a-3b+2c}{5\cdot\left(-9\right)-3\cdot12+2\cdot\left(-8\right)}=\dfrac{1}{-97}=-\dfrac{1}{97}\)

Do đó: a=9/97; b=-12/97; c=8/97

\(a-b-c=\dfrac{9}{97}+\dfrac{12}{97}-\dfrac{8}{97}=\dfrac{13}{97}\)

Theo đề, ta có: 

\(\left\{{}\begin{matrix}\dfrac{a}{-3}=\dfrac{b}{4}\\\dfrac{b}{3}=\dfrac{c}{-2}\end{matrix}\right.\Leftrightarrow\dfrac{a}{-9}=\dfrac{b}{12}=\dfrac{c}{-8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{-9}=\dfrac{b}{12}=\dfrac{c}{-8}=\dfrac{5a-3b+2c}{5\cdot\left(-9\right)-3\cdot12+2\cdot\left(-8\right)}=\dfrac{1}{-97}=-\dfrac{1}{97}\)

Do đó: a=9/97; b=-12/97; c=8/97

\(a-b-c=\dfrac{9}{97}+\dfrac{12}{97}-\dfrac{8}{97}=\dfrac{13}{97}\)