Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{16}\cdot\sqrt{25}+\sqrt{196}:\sqrt{49}\)
\(=\sqrt{16\cdot25}+\sqrt{196:49}\)
\(=20+2=22\)
b) \(36:\sqrt{2\cdot3^2\cdot18}-\sqrt{169}\)
\(=36:\sqrt{324}-\sqrt{169}\)
\(=36:18-13=2-13=-11\)
c) \(\sqrt{\sqrt{81}}\)
\(=\sqrt{9}=3\)
d) \(\sqrt{3^2+4^2}\)
\(=\sqrt{9+16}=\sqrt{25}=5\)
a) \(\sqrt{16}.\sqrt{25}+\sqrt{196}\div\sqrt{49}\)
\(=4.5+14:7\)
\(=20+2=22\)
b) \(36:\sqrt{2.3^2.18}-\sqrt{169}\)
\(=36:18-13=-11\)
c) \(\sqrt{\sqrt{81}}=\sqrt{9}=3\)
d) \(\sqrt{3^2+4^2}=\sqrt{25}=5\)
a) \(\sqrt{16}\).\(\sqrt{25}\)+\(\sqrt{196}\):\(\sqrt{49}\)
=4.5+14/7
=20+2
=22
a) \(\sqrt{16}\).\(\sqrt{25}\) + \(\sqrt{196}\) : \(\sqrt{49}\) = 4.5+14:9=22
b) 36:\(\sqrt{2.3^2.18}\) - \(\sqrt{169}\)= 36 : \(\)18 - 13 = -11
c) \(\sqrt{\sqrt{81}}\) = 3
d) \(\sqrt{3^2+4^2}\)= \(\sqrt{25}\)=5
1. Rút gọn biểu thức:
a) \(\sqrt{\dfrac{81}{25}.\dfrac{49}{16}.\dfrac{9}{196}}=\sqrt{\dfrac{81}{25}}.\sqrt{\dfrac{49}{16}}.\sqrt{\dfrac{9}{4.49}}=\dfrac{9}{5}.\dfrac{7}{4}.\dfrac{3}{2.7}=\dfrac{9.3}{5.4.2}=\dfrac{27}{40}\)
b) \(\sqrt{72}-5\sqrt{2}-\sqrt{49.3}+\sqrt{48}+\sqrt{12}=\)
\(=\sqrt{9.4.2}-5\sqrt{2}-\sqrt{49.3}+\sqrt{16.3}+\sqrt{4.3}\)
\(=3.2\sqrt{2}-5\sqrt{2}-7\sqrt{3}+4\sqrt{3}+2\sqrt{3}\)
\(=6\sqrt{2}-5\sqrt{2}-7\sqrt{3}+4\sqrt{3}+2\sqrt{3}\)
\(=\sqrt{2}-\sqrt{3}\)
c) \(\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}=\) \(=\left|2-\sqrt{3}\right|+\left|2+\sqrt{3}\right|=2-\sqrt{3}+2+\sqrt{3}=4\)
d) \(\sqrt{5}+\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}=\)
\(=\sqrt{5}+\sqrt{4.5}-\sqrt{9.5}+3\sqrt{9.2}+\sqrt{9.4.2}\)
\(=\sqrt{5}+2\sqrt{5}-3\sqrt{5}+3.3\sqrt{2}+3.2\sqrt{2}\)
\(=\sqrt{5}+2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+6\sqrt{2}\)
\(=15\sqrt{2}\)
a.
Áp dụng hệ thức lượt trong tam giác vuông ta có:
$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$
$\Leftrightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{3a^2}$
$\Rightarrow AC=\sqrt{3}a$
$BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+3a^2}=2a$
b.
$HB=\frac{BC}{4}$ thì $HC=\frac{3}{4}BC$
$\Rightarrow \frac{HB}{HC}=\frac{1}{3}$
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC; AC^2=CH.BC$
$\Rightarrow \frac{AB}{AC}=\sqrt{\frac{BH}{CH}}=\frac{\sqrt{3}}{3}$
Áp dụng định lý Pitago:
$4a^2=BC^2=AB^2+AC^2=(\frac{\sqrt{3}}{3}.AC)^2+AC^2$
$\Rightarrow AC=\sqrt{3}a$
$\Rightarrow AB=a$
c.
Áp dụng hệ thức lượt trong tam giác vuông:
$AB^2=BH.BC$
$\Leftrightarrow AB^2=BH(BH+CH)$
$\Leftrightarrow a^2=BH(BH+\frac{3}{2}a)$
$\Leftrightarrow BH^2+\frac{3}{2}aBH-a^2=0$
$\Leftrightarrow (BH-\frac{a}{2})(BH+2a)=0$
$\Rightarrow BH=\frac{a}{2}$
$BC=BH+CH=2a$
$AC=\sqrt{BC^2-AB^2}=\sqrt{3}a$
d. Tương tự phần a.
Bài 5:
\(\widehat{B}=60^0\)
\(AB=8\sqrt{3}\left(cm\right)\)
\(BC=16\sqrt{3}\left(cm\right)\)
Bài làm:
Bài 1:
a)\(\sqrt{16}.\sqrt{25}+\sqrt{196}:\sqrt{49}\)
= 4.5 + 14 : 7
= 20 + 2
= 22
b)\(36:\sqrt{2.3^2.18}-\sqrt{169}\)
= 36 : 18 - 14
= 2 - 14
= - 12
c)\(\sqrt{\sqrt{81}}\) = \(\sqrt{9}\) = 3
d)\(\sqrt{3^2+4^2}\)
= \(\sqrt{9+16}\)
= \(\sqrt{25}\)
= 5
Làm sai rồi