Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(x^2+y^2\ge2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Áp dụng vào bài toán có :
\(P\le\frac{x+y}{\frac{\left(x+y\right)^2}{2}}+\frac{y+z}{\frac{\left(y+z\right)^2}{2}}+\frac{z+x}{\frac{\left(z+x\right)^2}{2}}\) \(=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}=\frac{1}{2}\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)
Áp dụng BĐT Svacxo ta có :
\(\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}\), \(\frac{4}{y+z}\le\frac{1}{y}+\frac{1}{z}\), \(\frac{4}{z+x}\le\frac{1}{z}+\frac{1}{x}\)
Do đó : \(P\le\frac{1}{2}\left[2.\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]=2016\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{672}\)
P/s : Dấu "=" không chắc lắm :))
a)(x-y)3+(y-z)3+(z-x)3
=3(x-y+y-z+z-x)=3
b)nhân vào là rồi đối trừ là hết luôn ( nhưng là mũ 2 hay nhân 2 v mk là theo nhân 2 nhé]
Có: x2+y2+z2≥1/3 (x+y+z)2 =4/3
=> x2+y2+z2 -3 >= 4/3 - 3 = -5/3
Dấu "=" xảy ra khi x=y=z=2/3
a) Tìm được A = (x- y)(x + 5y).
Thay x = 4 và y = -4 vào A tìm được A = -128.
b) Tìm được B = 9 ( x - 1 ) 2 .
Thay x = - 4 vào B tìm được B = 81 4 .
c) Tìm được C = (x - y)(y - z)(x - z).
Thay x = 6,y = 5 và z = 4 vào C tìm được C = 2.
d) Thay 10 = x +1 vào D và biến đổi ta được D = -1.
Bài làm
Ta có: x2 + y2 + z2 = 12 ( 1 )
-4( x + y + z ) = -4 . 6
-4x - 4y - 4z = -24 ( 2 )
Cộng ( 1 ) vào ( 2 ) ta được:
x2 + y2 + z2 + ( -4x - 4y - 4z ) = 12 - 24
x2 + y2 + z2 - 4x - 4y - 4z = -12
x2 + y2 + z2 - 4x - 4y - 4z + 12 = 0
x2 + y2 + z2 - 4x - 4y - 4z + 4 + 4 + 4 = 0
( x2 - 4x + 4 ) + ( y2 - 4y + 4 ) + ( z2 - 4z + 4 ) = 0
( x - 2 )2 + ( y - 2 )2 + ( z - 2 )2 = 0
Vì ( x - 2 )2 > 0 V x
( y - 2 )2 > 0 V y
( z - 2 )2 > 0 V z
Nên x - 2 = 0 => x = 2
y - 2 = 0 => y = 2
x - 2 = 0 => z = 2
Vậy x =2; y = 2; z = 2
# Học tốt #
x + y + z = 6
Ta có: 1 + 2 + 3 = 6
=> x = 1
y = 2
z = 3