Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: $x\geq 0; y\geq 1$
PT $\Leftrightarrow (x-4\sqrt{x}+4)+(y-1-6\sqrt{y-1}+9)=0$
$\Leftrightarrow (\sqrt{x}-2)^2+(\sqrt{y-1}-3)^2=0$
Vì $(\sqrt{x}-2)^2; (\sqrt{y-1}-3)^2\geq 0$ với mọi $x\geq 0; y\geq 1$ nên để tổng của chúng bằng $0$ thì:
$\sqrt{x}-2=\sqrt{y-1}-3=0$
$\Leftrightarrow x=4; y=10$
b.
ĐKXĐ: $x\geq -1; y\geq -2; z\geq -3$
PT $\Leftrightarrow x+y+z+35-4\sqrt{x+1}-6\sqrt{y+2}-8\sqrt{z+3}=0$
$\Leftrightarrow [(x+1)-4\sqrt{x+1}+4]+[(y+2)-6\sqrt{y+2}+9]+[(z+3)-8\sqrt{z+3}+16]=0$
$\Leftrightarrow (\sqrt{x+1}-2)^2+(\sqrt{y+2}-3)^2+(\sqrt{z+3}-4)^2=0$
$\Rightarrow \sqrt{x+1}-2=\sqrt{y+2}-3=\sqrt{z+3}-4=0$
$\Rightarrow x=3; y=7; z=13$
\(x^2+2x\sqrt{x+\frac{1}{x}}=8x-1\)(đk;x>0)
\(\Leftrightarrow x^2+2\sqrt{x}\cdot\sqrt{x^2+1}=8x-1\)
\(\Leftrightarrow\left(x^2+1\right)+2\sqrt{x}\cdot\sqrt{x^2+1}+x=9x\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}\right)^2-9x=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+\sqrt{x}+3\sqrt{x}\right)\left(\sqrt{x^2+1}+\sqrt{x}-3\sqrt{x}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+1}+4\sqrt{x}\right)\left(\sqrt{x^2+1}-2\sqrt{x}\right)=0\)
\(\Leftrightarrow\sqrt{x^2+1}-2\sqrt{x}=0\)(vì \(\sqrt{x^2+1}+4\sqrt{x}>0\))
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2-\sqrt{3}\\x=2+\sqrt{3}\end{cases}}\)(thõa mãn điều kiện)
\(\sqrt{x-2009}-\sqrt{y-2008}-\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)(đk:x>2009,y>2008,z>2)
\(\Leftrightarrow\left(\sqrt{x-2009}-1\right)^2+\left(\sqrt{x-2008}+1\right)^2+\left(\sqrt{z-2}+1\right)^2+4014=0\)(không thõa mãn)
Lý do có kết quả trên là vì chuyển 1\2 qua vế trái và tách theo hằng đẳng thức
Bài tiếp theo cũng làm tương tự
Bạn tham khảo tại đây:
Câu hỏi của Vũ Sơn Tùng - Toán lớp 9 | Học trực tuyến
Khai triển nó ra,ta có:
\(1+y^2=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+z^2=xy+yz+zx+z^2=\left(z+x\right)\left(z+y\right)\)
Ta có:\(P=\Sigma x\sqrt{\frac{\left(y+x\right)\left(y+z\right)\left(z+x\right)\left(z+y\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(\Sigma x\cdot\left(y+z\right)\)
Rút gọn dc như vậy rồi chị làm nốt ạ
2/ \(\Rightarrow5\sqrt{x+1}-6\sqrt{x+1}+3\sqrt{x+1}=2\sqrt{2x+3}\)
\(\Rightarrow\sqrt{x+1}\left(5-6+3\right)=2\sqrt{2x+3}\)
\(\Rightarrow2\sqrt{x+1}=2\sqrt{2x-3}\Rightarrow\sqrt{x+1}=\sqrt{2x+3}\)
\(\Rightarrow x+1=2x+3\Rightarrow x=-2\)
bài 1:
đkxđ: x\(\ge\)0;y\(\ge\)1;z\(\ge\)2
\(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\left(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}\right)=2.\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow2\sqrt{x}+2\sqrt{y-1}+2\sqrt{z-2}=x+y+z\)
\(\Leftrightarrow x-2\sqrt{x}+y-2\sqrt{y-1}+z-2\sqrt{z-2}=0\)
\(\Leftrightarrow x-2\sqrt{x}+1+y-1-2\sqrt{y-1}+1+z-2-2\sqrt{z-2}+1+1=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=-1\)(Vô lí)
Vậy phương trình vô nghiệm
bài 2:
đkxđ: x+1\(\ne\)0
<=>x\(\ne\)-1
\(5\sqrt{x+1}-\sqrt{36x+36}+\sqrt{9x+9}=\sqrt{8x+12}\)
\(\Leftrightarrow5\sqrt{x+1}-\sqrt{36.\left(x+1\right)}+\sqrt{9.\left(x+1\right)}=\sqrt{8x+12}\)
\(\Leftrightarrow5\sqrt{x+1}-6\sqrt{x+1}+3\sqrt{x+1}=\sqrt{8x+12}\)
\(\Leftrightarrow2\sqrt{x+1}=\sqrt{8x+12}\)
\(\Leftrightarrow4.\left(x+1\right)=8x+12\)
\(\Leftrightarrow4x+4=8x+12\)
\(\Leftrightarrow-4x=8\)
\(\Leftrightarrow x=-2\)(thõa mãn)
Vậy x=-2