K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

A, Ta có ( x -1 )( y -2) = 5

=> x - 1 và y - 2 \(\in\) Ư ( 5) = { 1 ; -1 ; 5 ;-5 }

Ta có bảng

x - 11-15-5
x206-4
y -21  -1 5  -5
y317-3

Các câu còn lại tương tự nha bn

cảm ơn bạn nha

25 tháng 7 2017

a, (x-1).(y-2)=5=> x-1, y-2 e Ư(5)={1,-1,5,-5} rồi bn tìm x,y

b, c làm tương tự

2 tháng 2 2016

Câu 1: 

(2x + 1) + (2x + 2) + ... + (2x + 2015) = 0

=> 2x + 1 + 2x + 2 + ... + 2x + 2015 = 0

=> 2015.2x + (1 + 2 + ... + 2015) = 0

=> 4030x + (2015 + 1).2015:2 = 0

=> 4030x + 2031120 = 0

=> x = -504

Câu 2:

x - y = 8; y - z = 10; x + z = 12

=> (x - y) + (y - z) = 8 + 10 = 18

=> x - z = 18

=> x = (12 + 18) : 2 = 15

=> z = 15 - 18 = -3

=> y = 15 - 8 = 7

=> x + y + z = 15 + 7 + (-3) = 19

2 tháng 2 2016

a, -504

b,19 dung thi tic minh nha

DD
8 tháng 7 2021

a) \(\left(x+3\right)\left(x+y-5\right)=7\)

mà \(x,y\)là số tự nhiên nên \(x+3,x+y-5\)là các ước của \(7\).

Ta có bảng sau: 

x+317
x+y-571
x-2 (l)4
y 2

Vậy phương trình có nghiệm tự nhiên là: \(\left(4,2\right)\)

b) \(\left(2x+1\right)\left(y-3\right)=10\)

mà \(x,y\)là số tự nhiên, \(2x+1\)là số tự nhiên lẻ, \(2x+1,y-3\)là ước của \(10\)nên ta có bảng sau: 

2x+115
y-3102
x02
y135

Vậy phương trình có nghiệm tự nhiên là: \(\left(0,13\right),\left(2,5\right)\).

c) \(\left(x+1\right)\left(2y-1\right)=12\)

mà \(x,y\)là số tự nhiên, \(2y-1\)là số tự nhiên lẻ, \(x+1,2y-1\)là ước của \(12\)nên ta có bảng sau: 

2y-113
x+1124
y12
x113

Vậy phương trình có nghiệm tự nhiên là \(\left(11,1\right),\left(3,2\right)\).

d) \(x+6=y\left(x+1\right)\)

\(\Leftrightarrow\left(x+1\right)\left(y-1\right)=5\)

mà \(x,y\)là số tự nhiên nên \(x+1,y-1\)là ước của \(5\).Ta có bảng sau: 

x+115
y-151
x04
y62

Vậy phương trình có nghiệm tự nhiên là: \(\left(0,6\right),\left(4,2\right)\).

19 tháng 12 2021

Bài 1: 

a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)

15 tháng 1 2021

Bài 1:

A = 3(x + 1)2 + 5 

Ta có: (x + 1)2 \(\ge\) 0 Với mọi x

\(\Rightarrow\) 3(x + 1)2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 3(x + 1)+ 5 \(\ge\) 5 với mọi x

Hay A \(\ge\) 5

Dấu "=" xảy ra khi và chỉ khi x + 1 = 5 hay x = -1

Vậy...

B = 2|x + y| + 3x2 - 10

Ta có: 2|x + y| \(\ge\) 0 với mọi x, y

3x\(\ge\) 0 với mọi x

\(\Rightarrow\) 2|x + y| + 3x2 - 10 \(\ge\) -10 với mọi x,y

Dấu "=" xảy ra khi và chỉ khi x + y = 0; x = 0

\(\Rightarrow\) x = y = 0

Vậy ...

C = 12(x - y)2 + x2 - 6

Ta có: 12(x - y)2 \(\ge\) 0 với mọi x; y

x2 \(\ge\) 0 với mọi x

\(\Rightarrow\) 12(x - y)2 + x2 - 6 \(\ge\) -6 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = y = 0

Phần D ko rõ đầu bài nha vì D luôn có một giá trị duy nhất

Bài 2:

Phần A ko rõ đầu bài!

B = 3 - (x + 1)2 - 3(x + 2y)2

Ta có: -(x + 1)2 \(\le\) 0 với mọi x

-3(x + 2y)\(\le\) 0 với mọi x, y

\(\Rightarrow\) 3 - (x + 1)2 - 3(x + 2y)\(\le\) 3 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x = 2y; x + 1 = 0

\(\Rightarrow\) x = -1; y = \(\dfrac{-1}{2}\)

Vậy ...

C = -12 - 3|x + 1| - 2(y - 1)2

Ta có: -3|x + 1| \(\le\) 0 với mọi x

-2(y - 1)2 \(\le\) 0 với mọi y

\(\Rightarrow\)  -12 - 3|x + 1| - 2(y - 1)\(\le\) -12 với mọi x, y

Dấu "=" xảy ra khi và chỉ khi x + 1 = 0; y - 1 = 0

\(\Rightarrow\) x = -1; y = 1

Vậy ...

Phần D đề ko rõ là \(\dfrac{5}{2x^2}-3\) hay \(\dfrac{5}{2}\)x2 - 3 nữa

F = \(\dfrac{-5}{3}\) - 2x2

Ta có: -2x2 \(\le\) 0 với mọi x

\(\Rightarrow\) \(\dfrac{-5}{3}-2x^2\) \(\le\) \(\dfrac{-5}{3}\) với mọi x

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy ...

Chúc bn học tốt!

22 tháng 1 2019

\(\left(x-3\right)\left(x-12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=12\end{cases}}\)

\(\Rightarrow x\in\left\{3;12\right\}\)

\(\left(x^2-81\right)\left(x^2+9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2-81=0\\x^2+9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x\in\varnothing\end{cases}}\Leftrightarrow x=9\)

\(\Rightarrow x=9\)

\(\left(x-4\right)\left(x+2\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x-4\\x+2\end{cases}}\)trái dấu

\(TH1:\hept{\begin{cases}x-4>0\\x+2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>4\\x< -2\end{cases}}\Leftrightarrow x\in\varnothing\)

\(TH2:\hept{\begin{cases}x-4< 0\\x+2>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 4\\x>-2\end{cases}}\Leftrightarrow x\in\left\{-1;0;1;2;3\right\}\)

Vậy \(x\in\left\{-1;0;1;2;3\right\}\)