K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2017

a) -3/5

b) -9/4

c) x thuộc N*( chắc thế)

6 tháng 1 2017

Bn giải kĩ đc k 

21 tháng 8 2018

a, ( 8x - 3 ) ( 3x + 2 ) - ( 4x + 7 ) ( x + 4 ) = ( 2x + 1 ) ( 5x - 1 )

 ( 24x2 + 16x - 9x - 6 ) - ( 4x2 - 16x - 7x + 28 ) = 10x2 - 2x + 5x -1

24x2 + 16x - 9x - 6 -4x2 - 16x - 7x - 10x2 + 2x - 5x = 6 + 28 - 1

10x2 -19x = 33

10x2 - 19x -33 = 0 \(\Leftrightarrow\)10x( x+ 3 ) + 11 ( x- 3 ) = 0

=>  ( x- 3 ) ( 10x + 11 ) = 0\(\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{-11}{10}\end{cases}}\)

b, 4( x - 1 ) ( x + 5 ) - ( x + 2 ) ( x + 5 ) = 3( x - 1 ) ( x + 2 )

4( x2 - 5x - x + 5 ) - ( x2 + 5x + 2x + 10 ) = 3( x2 + 2x - x - 2 )

4x2 - 20x - 4x + 20 - x2 - 5x - 2x - 10 = 3x2 + 6x - 3x - 6

( 4x2 - x2 ) + ( -20x - 4x - 5x - 2x ) + 20 - 10 = 3x2 + ( 6x - 3x ) - 6

3x2 - 31x - 3x2 - 3x = -6-10

-34x = -16

x = \(\frac{8}{17}\)

a) Đặt A(x)=0

\(\Leftrightarrow4x-1=0\)

\(\Leftrightarrow4x=1\)

hay \(x=\dfrac{1}{4}\)

b) Đặt B(x)=0

\(\Leftrightarrow2x^2-8=0\)

\(\Leftrightarrow2x^2=8\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

30 tháng 7 2018

tìm x bt :

a, ( 2x + 1 )4 = ( 2x + 1 )6

=>(2x+1)4-(2x+1)6=0

=>(2x+1)4-(2x+1)4.(2x+1)2=0

=>(2x+1)4.[1-(2x+1)2]=0

=>(2x+1)4=0 hoặc 1-(2x+1)2=0

=>2x+1=0 hoặc(2x+1)2=1

=>2x=-1 hoặc(2x+1)2=12

=>x=\(\dfrac{-1}{2}\) hoặc 2x+1=1 =>2x=0 => x=0

Vậy x∈{0;\(\dfrac{-1}{2}\)}

Bài 2: 

\(\left(3x-5\right)^{2006}+\left(y^2-1\right)^{2008}+\left(x-z\right)^{2100}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-5=0\\y^2-1=0\\x=z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=z=\dfrac{5}{3}\\y\in\left\{1;-1\right\}\end{matrix}\right.\)

Có (3-x)2 \(\ge\)0 với mọi x
=> 5(3-x)2 \(\ge\)0 với mọi x
=> 5(3-x)2 +7\(\ge\)7 với mọi x
=> \(\frac{1}{5\left(3-x\right)^2+7}\)\(\le\) \(\frac{1}{7}\) với mọi x
Dấu "=" xảy ra <=> (3-x)2=0 <=> 3-x=0 <=> x=3
Vậy GTLN của A bằng \(\frac{1}{7}\)<=> x=3

18 tháng 4 2022

\(P\left(x\right)+Q\left(x\right)=\left(2x^4+x^3-4x+5\right)+\left(x^4+3x^3+2x-1\right)\)

                       \(=2x^4+x^3-4x+5+x^4+3x^3+2x-1\)

                      \(=\left(2x^4+x^4\right)+\left(x^3+3x^3\right)+\left(-4x+2x\right)+\left(5-1\right)\)

                      \(=3x^4+4x^3-2x+4\)

\(R\left(x\right)+P\left(x\right)=x^4-2x^2+1\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-P\left(x\right)\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^2+1\right)-\left(2x^4+x^3-4x+5\right)\)

\(\Rightarrow R\left(x\right)=x^4-2x^2+1-2x^4-x^3+4x-5\)

\(\Rightarrow R\left(x\right)=\left(x^4-2x^4\right)+\left(-2x^2\right)+\left(1-5\right)+\left(-x^3\right)+4x\)

\(\Rightarrow R\left(x\right)=-x^4-2x^2-4-x^3+4x\)

24 tháng 8 2019

Vì \(x^3-2x^2-x+2=\left(x-1\right)\left(x+1\right)\left(x-2\right)\)nên từ giả thiết ta có:

\(f\left(x\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)q\left(x\right)+1\)

Suy ra \(\hept{\begin{cases}f\left(1\right)=1&f\left(-1\right)=1&f\left(2\right)=1\end{cases}\Rightarrow\hept{\begin{cases}a+b+c=1\\a-b+c=7\\4a+2b+c=1\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=-3\\c=3\end{cases}}}\)