K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

Bài 1 :

\(x\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\left(\frac{1}{2}-\frac{1}{50}\right)=1\)

\(\Rightarrow x\cdot\frac{24}{50}=1\)

\(\Rightarrow x=1\div\frac{24}{50}=\frac{25}{12}\)

                            #Louis

30 tháng 4 2019

\(\frac{1}{2.3}x+\frac{1}{3.4}x+\frac{1}{4.5}x+...+\frac{1}{49.50}x=1\)

\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\right)x=1\)

\(\left(\frac{1}{2}-\frac{1}{50}\right)x=1\)

\(\frac{12}{25}x=1\)

Đến đây dễ rồi :)))

Bn tự tính típ nha

30 tháng 4 2018

A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)

Mà A=1+B=>A=1+B<1+1=2

30 tháng 4 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)

B)

ta có : \(1=1\)

\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)

\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)

\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)

tất cả công lại \(\Rightarrow B< 6\)

18 tháng 5 2017

Bài 3:

a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)

A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)

3A = \(1-\frac{1}{2^6}\)

=> 3A < 1 

=> A < \(\frac{1}{3}\)(đpcm)

b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)

4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)       (1)

Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)

4B = \(3-\frac{1}{3^{99}}\)

=> 4B < 3

=> B < \(\frac{3}{4}\)   (2)

Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)

18 tháng 5 2017

bài 1:

5n+7 chia hết cho 3n+2

=> [3(5n+7) - 5(3n + 2)] chia hết cho 3n+2

=> (15n + 21 - 15n - 10) chia hết cho 3n+2

=> 11 chia hết cho 3n + 2

=> 3n + 2 thuộc Ư(11) = {1;-1;11;-11}

Ta có bảng:

3n + 21-111-11
n-1/3 (loại)-1 (chọn)3 (chọn)-13/3 (loại)

Vậy n = {-1;3}

1 tháng 5 2018

2A=1+1/2+1/2^2+1/2^3+...+1/2^99

-A=    1/2+1/2^2+1/2^3+...+1/2^99+1/2^100

-------------------------------------------------------------------

A=1-1/2^100

A=2^100-1/2^100<1(dpcm)

1 tháng 5 2018

B), B=2/1.2 +22.3 +23.4 +...+299.100 <2 =

=1-1/2-1/2-1/3+.........+1/99-1/100

=1-1/100

=99/100 

vì 99/100<2 nên B=2/1.2+2/2.3+2/3.4+......+2/99.100<2

24 tháng 7 2020

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)

Ta có : \(\frac{1}{2^2}=\frac{1}{2\cdot2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\)

...

\(\frac{1}{8^2}=\frac{1}{8\cdot8}< \frac{1}{7\cdot8}\)

Cộng vế theo vế 

\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{7\cdot8}\)

\(\Rightarrow B< \frac{1}{1}-\frac{1}{8}=\frac{7}{8}\)

Lại có \(\frac{7}{8}< 1\)

Theo tính chất bắc cầu => \(B< \frac{7}{8}< 1\)

\(\Rightarrow B< 1\left(đpcm\right)\)

1 tháng 5 2019

a) Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2014^2}\)

    Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)

               \(\frac{1}{3^2}< \frac{1}{2.3}\)

                .................

             \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2013.2014}\)

\(\Rightarrow B< 1-\frac{1}{2014}< 1\)

\(\Rightarrow B< 1\)

\(\Rightarrow1+B< 1+1\)

Hay \(A< 2\)

1 tháng 5 2019

C) Ta có: \(\frac{1}{2}< \frac{2}{3}\)

                 \(\frac{3}{4}< \frac{4}{5}\)

                .................

            \(\frac{9999}{10000}< \frac{10000}{10001}\)

\(\Rightarrow C< \frac{2}{3}.\frac{4}{5}.....\frac{10000}{10001}\)

\(\Rightarrow C^2< \left(\frac{1}{2}.\frac{3}{4}.....\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.....\frac{10000}{10001}\right)\)

\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)

\(\Rightarrow C^2< \frac{1}{10000}\)

\(\Rightarrow C< \frac{1}{100}\)

Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\) b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\) c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\) b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2Bài 3: Tính giá trị của biểu thức...
Đọc tiếp

Bài 1: a) \(A=\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+...+\frac{5}{61.66}\)

b) \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\)

c) \(C=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{1989.1990}\)

Bài 2: a. Tính tổng: \(M=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)

b. Cho: \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) chứng minh rằng 1 < S < 2

Bài 3: Tính giá trị của biểu thức sau:

\(A=\left(\frac{1}{7}+\frac{1}{23}-\frac{1}{1009}\right):\left(\frac{1}{23}+\frac{1}{7}-\frac{2}{2009}+\frac{1}{7}.\frac{1}{23}.\frac{1}{2009}\right)+1:\left(30.1009-160\right)\)

Bài 4: Tính nhanh:

\(\text{a) 35 . 34 + 35 . 86 + 67 . 75 + 65 . 45}\)

\(\text{b) 21 . }7^2-11.7^2+90.7^2+49.125.16\)

Bài 5: Thực hiện phép tinh sau:

a. \(\frac{2181.729+243.81.27}{3^2.9^2.234+18.54+162.9+723.729}\)

b. \(\frac{1}{1.2+}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)

c. \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

d. \(\frac{5.4^{15}-9^9-4.3^{20}}{5.2^{19}.6^{19}-7.2^{29}.27^6}\)

giúp mk nha! nhớ viết cách làm nha!

 

13
23 tháng 10 2016

Bài 1 mik học xong quên hết òi (mấy bài kia là hok biết luôn :V)

14 tháng 12 2016
A=\(\frac{5}{11.16}+\frac{5}{16.21}+\frac{5}{21.26}+....+\frac{5}{61.66}\)A=\(\frac{5}{11}-\frac{5}{16}+\frac{5}{16}-\frac{5}{21}+...+\frac{5}{61}-\frac{5}{66}\)A=5/11-5/66A=25/66  
25 tháng 3 2018

x=2009 dễ mà

23 tháng 3 2018

mk làm câu c cho nó dễ

c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010

=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010

=1-1/x+1=2009/2010

=1/x+1=1-2009/2010

=1/x+1=1/2010

=) x+1=2010

x         =2010-1

x         =2009