Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|x+\frac{2}{3}\right|\)
Ta có: \(\left|x+\frac{2}{3}\right|\ge0\forall x\)
\(A=0\Leftrightarrow\left|x+\frac{2}{3}\right|=0\Leftrightarrow x=-\frac{2}{3}\)
Vậy \(A_{min}=0\Leftrightarrow x=-\frac{2}{3}\)
\(B=\left|x\right|+\frac{1}{2}\)
Ta có: \(\left|x\right|\ge0\forall x\)
\(\Rightarrow\left|x\right|+\frac{1}{2}\ge\frac{1}{2}\forall x\)
\(B=\frac{1}{2}\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\)
Vậy \(B_{min}=\frac{1}{2}\Leftrightarrow x=0\)
Câu c,d tương tự
P/S tất cả những bài trên chỉ tìm được min, ko tìm được max.
Ta có:
\(\frac{x+7}{2010}+\frac{x+6}{2011}=\frac{x+5}{2012}+\frac{x+4}{2013}\)
\(\Leftrightarrow\left(\frac{x+7}{2010}+1\right)+\left(\frac{x+6}{2011}+1\right)=\left(\frac{x+5}{2012}+1\right)+\left(\frac{x+4}{2013}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2010}+\frac{x+2017}{2011}=\frac{x+2017}{2012}+\frac{x+2017}{2013}\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2010}+\frac{1}{2011}\right)=\left(x+2017\right)\left(\frac{1}{2013}+\frac{1}{2014}\right)\)
Suy ra \(x+2017=0\)
Vậy \(x=-2017\)
b) Dễ tự làm nhé
x+7/2010+x+6/2011=x+5/2012+x+4/2013
((x+7/2010)-1)+((x+6/2011)-1)=(x+5/2012)-1)+(x+4/2013)-1)
x+2017/2010+x+2017/2011-x+2017/2012-x+2017/2013=0
x+2017(1/2010+1/2011-1/2012-1/2013)=0
x+2017=0(vì 1/2010+1/2011-1/2012-1/2013<0)
x=-2017
vậy.......
tk mk nha bn