K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

1) Nếu ý bạn là ||3x-3|+2x+(-1)2016 |=3x+20170 thì bạn có thể tham khảo:https://h.vn/hoi-dap/question/514972.html

Nhưng nếu ý bạn là pt thế này thì... áp dụng tương tự nhé! Khổ hơn thôi :V

2) Đây là nơi bạn cần tìm: https://h.vn/hoi-dap/question/562808.html

Học tốt nhé ^3^

2 tháng 12 2019

Bài 1 :

\(\left||3x-3|+2x+\left(-1\right)\left(2016\right)=3x+20170\right|\)

\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|+2x-2016=3x+20170\\\left|3x-3\right|+2x-2016=-3x-20170\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=3x-2x+2016+20170\\\left|3x-3\right|=-3x-20170-2x+2016\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left|3x-3\right|=x+22186\\\left|3x-3\right|=-5x-18154\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x-3=x+22186\\3x-3=-x-22186\end{cases}}\)hoặc \(\orbr{\begin{cases}3x-3=-5x-18154\\3x-3=5x+18154\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x-x=22186+3\\3x+x=3-22186\end{cases}}\)hoặc \(\orbr{\begin{cases}3x+5x=3-18154\\3x-5x=3+18154\end{cases}}\)

Còn lại tự làm nốt nhá !

11 tháng 12 2019

\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)

\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)

\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)

11 tháng 12 2019

\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)

\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)

\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)

Làm nốt

27 tháng 11 2017

GTNN :\(A=\frac{\left(2x^2+2\right)+\left(x^2-2x+1\right)}{x^2+1}=2+\frac{\left(x-1\right)^2}{x^2+1}\ge2\forall x\) có GTNN là 2

GTLN : \(A=\frac{\left(4x^2+4\right)-\left(x^2+2x+1\right)}{x^2+1}=4-\frac{\left(x+1\right)^2}{x^2+1}\le4\forall x\) có GTLN là 4

11 tháng 3 2020

ĐK: \(x\ge0\)

+) Với x = 0 => A = 0

+) Với x khác 0

Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)

=> \(A\le\frac{4}{3}\)

Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1

Vậy max A = 4/3 tại x = 1

Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN 

Bài 1: 

Ta có: \(D=\sqrt{16x^4}-2x^2+1\)

\(=4x^2-2x^2+1\)

\(=2x^2+1\)