Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
\(a,=5\left(x^2+2xy+y^2\right)-10y^2+5=5\left(x+y\right)^2-10y^2+5\\ =5\left(1+2\right)^2-10\cdot4+5=45-40+5=10\\ b,=7\left(x-y\right)-\left(x-y\right)^2=\left(x-y\right)\left(7-x+y\right)\\ =\left(2-2\right)\left(7-2+2\right)=0\)
b: \(=7\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(7-x+y\right)=0\)
A = x^2 + 5y^2 + 4xy - 2y - 3
= x^2 + 4xy + 4y^2 + y^2 - 2y + 1 - 4
= ( x + 2y )^2 + ( y - 1 )^2 - 4 >= -4
Dấu ''='' xảy ra khi y = 1 ; x = -2
Vậy GTNN A là -4 khi x = -2 ; y = 1
Bài 1:
\(f\left(x\right)=6x^2-x+1=0\)
\(\Leftrightarrow x\left(6x-1\right)=-1\)
\(\Leftrightarrow\) Khi x=1 thì 6x-1=-1 <=> 6x=0<=> x=0(không thõa mãn)
Khi x=-1 thì 6x-1=1 <=> 6x=2 <=> 2/6=1/3(không thõa mãn)
vậy phương trình đã cho vô ngiệm
Bài 2: Mk ko bt làm xin lỗi bạn