Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
Để \(A=\frac{12}{3n-1}\) là số nguyên thì 12 ⋮ 3n - 1 ⇒ 3n -1 ∈ Ư ( 12 ) = { + 1 ; + 2 ; + 3 ; + 6 ; + 12 }
3n - 1 | - 1 | 1 | - 2 | 2 | - 3 | 3 | - 6 | 6 | - 12 | 12 |
3n | 0 | 2 | - 1 | 3 | - 2 | 4 | - 5 | 7 | - 11 | 13 |
n | 0 | 2/3 | - 1/3 | 1 | - 2/3 | 4/3 | - 5/3 | 7/3 | - 11/3 | 13/3 |
Thỏa mãn đề bài n ∈ { 0; 1 }
Các ý khác làm tương tự
Để D là phân số nguyên thì 6n-3/3n+1 phải là 1 số nguyên
Ta có 6n-3/3n+1=6n+2-5/3n+1=2(3n+1)/3n+1 - 5/3n+1=2+ 5/3n+1
Để D có GT nguyên thì 5/3n+1 có GT nguyên hay 5 chia hết cho 3n+1
=> 3n+1 thuộc Ước của 5
=> 3n+1 thuộc {-5;-1;1;5}
=> n thuộc {-2;-2/3;0;4/3}
mình nhanh quá đến nỗi quên trả lời đây!
trả lời giùm mk đi