K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2018

Bài 1

a, \(D=1-\left|2x-3\right|\)

Ta có : \(\left|2x-3\right|\ge0\)

\(\Rightarrow1-\left|2x-3\right|\le1\)

Dấu "=" xảy ra khi \(\left|2x-3\right|=0\)

\(\Leftrightarrow2x-3=0\)

\(\Leftrightarrow2x=3\)

\(\Leftrightarrow x=3:2=\dfrac{3}{2}\)

15 tháng 10 2018

\(b,\) Ta có : \(\left|10-5x\right|\ge0\Rightarrow\left|10-5x\right|+14,2\ge14,3\Rightarrow-\left|10-5x\right|-14,2\le-14,2\)

Dấu "=" xảy ra khi \(-\left|10-5x\right|=0\)

\(\Leftrightarrow10-5x=0\)

\(\Leftrightarrow5x=10\)

\(\Leftrightarrow x=10:5=2\)

Vậy \(Emax=-14,2\Leftrightarrow x=2\)

\(c,\) Ta có : \(\left|5x-2\right|\ge0\)

\(\left|3y-12\right|\ge0\)

\(\left|5x-2\right|+\left|3y+12\right|-4\ge-4\)

\(4-\left|5x-2\right|-\left|3y+12\right|\le4\)

Dấu "=" xảy ra khi \(\left[{}\begin{matrix}\left|5x-2\right|=0\\\left|3y+12\right|=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=2\\3y=-12\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\y=-4\end{matrix}\right.\)

\(d,\) \(A=5-3\left(2x-1\right)^2\)

Ta có : \(\left(2x-1\right)^2\ge0\)

\(\Rightarrow3.\left(2x-1\right)^2\ge0\)

\(\Rightarrow3.\left(2x-1\right)^2-5\ge-5\)

\(\Rightarrow5-3\left(2x-1\right)^2\le5\)

Dấu "=" xảy ra khi \(\left(2x-1\right)^2=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(Amax=5\Leftrightarrow x=\dfrac{1}{2}\)

help me ai nhanh nhất mik tích cho

31 tháng 3 2021

Câu a nhìn là bt mà

Còn câu b chưa học nên ko giúp đc, xin lỗi nháleu

a) Ta có: \(\dfrac{4}{5}-3\left|x\right|=\dfrac{1}{5}\)

\(\Leftrightarrow3\left|x\right|=\dfrac{4}{5}-\dfrac{1}{5}=\dfrac{3}{5}\)

\(\Leftrightarrow\left|x\right|=\dfrac{1}{5}\)

hay \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\)

b) Ta có: \(4x-\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{4}{5}\)

nên \(\dfrac{41}{10}x=\dfrac{4}{5}\)

hay \(x=\dfrac{8}{41}\)

c) Ta có: \(\left(2x-8\right)\left(10-5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

d) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}\)

\(\Leftrightarrow\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}-\dfrac{3}{4}=\dfrac{14}{4}-\dfrac{3}{4}=\dfrac{11}{4}\)

\(\Leftrightarrow\left|2x-1\right|=11\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=11\\2x-1=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=12\\2x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)

24 tháng 7 2017

mn ơi giúp nhé

23 tháng 12 2020

a) Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\)

\(\Leftrightarrow\dfrac{a}{8}=\dfrac{b}{12}\)(1)

Ta có: \(\dfrac{b}{4}=\dfrac{c}{5}\)

nên \(\dfrac{b}{12}=\dfrac{c}{15}\)(2)

Từ (1) và (2) suy ra \(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}\)

mà a+b+c=2 

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{8}=\dfrac{b}{12}=\dfrac{c}{15}=\dfrac{a+b+c}{8+12+15}=\dfrac{2}{35}\)

Do đó: 

\(\left\{{}\begin{matrix}\dfrac{a}{8}=\dfrac{2}{35}\\\dfrac{b}{12}=\dfrac{2}{35}\\\dfrac{c}{15}=\dfrac{2}{35}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{16}{35}\\b=\dfrac{24}{35}\\c=\dfrac{30}{35}=\dfrac{6}{7}\end{matrix}\right.\)

Vậy: \(a=\dfrac{16}{35}\)\(b=\dfrac{24}{35}\)\(c=\dfrac{6}{7}\)

b) Ta có: 2a=3b=5c

nên \(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}\)

mà a+b-c=3

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được: 

\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{1}{3}}=\dfrac{c}{\dfrac{1}{5}}=\dfrac{a+b-c}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{3}{\dfrac{19}{30}}=\dfrac{90}{19}\)

Do đó: 

\(\left\{{}\begin{matrix}2a=\dfrac{90}{19}\\3b=\dfrac{90}{19}\\5c=\dfrac{90}{19}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{45}{19}\\b=\dfrac{30}{19}\\c=\dfrac{18}{19}\end{matrix}\right.\)

Vậy: \(a=\dfrac{45}{19}\)\(b=\dfrac{30}{19}\)\(c=\dfrac{18}{19}\)

10 tháng 8 2018

\(xy-3x-y=6\)

\(=>xy+3x-y-3=6-3\)

\(=>x\left(y+3\right)-\left(y+3\right)=3\)

\(=>\left(y+3\right)\left(x-1\right)=3\)

y+3 -1 3 1 -3
x-1 -3 1 3 -1

y+3 -1 3 -3 1
y -4 -1 -7 -3

x-1 -3 1 3 -1
x -2 2 4 0

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Bài 1:

a.

$|x+\frac{7}{4}|=\frac{1}{2}$

\(\Leftrightarrow \left[\begin{matrix} x+\frac{7}{4}=\frac{1}{2}\\ x+\frac{7}{4}=-\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-5}{4}\\ x=\frac{-9}{4}\end{matrix}\right.\)

b. $|2x+1|-\frac{2}{5}=\frac{1}{3}$
$|2x+1|=\frac{1}{3}+\frac{2}{5}$

$|2x+1|=\frac{11}{15}$

\(\Leftrightarrow \left[\begin{matrix} 2x+1=\frac{11}{15}\\ 2x+1=\frac{-11}{15}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{-2}{15}\\ x=\frac{-13}{15}\end{matrix}\right.\)

c.

$3x(x+\frac{2}{3})=0$

\(\Leftrightarrow \left[\begin{matrix} 3x=0\\ x+\frac{2}{3}=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=\frac{-3}{2}\end{matrix}\right.\)

d.

$x+\frac{1}{3}=\frac{2}{5}-(\frac{-1}{3})=\frac{2}{5}+\frac{1}{3}$

$\Leftrightarrow x=\frac{2}{5}$

AH
Akai Haruma
Giáo viên
25 tháng 7 2021

Nguyễn Quý Trung:

\(x+\dfrac{1}{3}=\dfrac{2}{5}+\dfrac{1}{3}\)

Bạn bớt 2 vế đi 1/3 thì \(x=\dfrac{2}{5}\)