Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: \(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\sqrt{10}\)
a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)
= \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)
= \(\frac{-2\sqrt{6}}{2}\)
= \(-\sqrt{6}\)
a) \(\sqrt{24+8\sqrt{5}}+\sqrt{9-4\sqrt{5}}\)
\(=2\sqrt{5}+2+\sqrt{5}-2\)
\(=3\sqrt{5}\)
b) \(\sqrt{17-12\sqrt{2}}+\sqrt{9+4\sqrt{2}}\)
\(=3-2\sqrt{2}+2\sqrt{2}-1\)
=2
c) \(\sqrt{6-4\sqrt{2}}+\sqrt{22-12\sqrt{2}}\)
\(=2-\sqrt{2}+3\sqrt{2}-2\)
\(=2\sqrt{2}\)
a: Ta có: \(A=\sqrt{8}-2\sqrt{18}+3\sqrt{50}\)
\(=2\sqrt{2}-6\sqrt{2}+15\sqrt{2}\)
\(=11\sqrt{2}\)
b: Ta có: \(B=\sqrt{125}-10\sqrt{\dfrac{1}{20}}+\dfrac{5-\sqrt{5}}{\sqrt{5}}\)
\(=5\sqrt{5}-\sqrt{5}+\sqrt{5}-1\)
\(=5\sqrt{5}-1\)
c)\(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}=A\\ \Rightarrow\sqrt{2}A=\sqrt{6+2\sqrt{5}+}\sqrt{6-\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1+\sqrt{5}-1\\ =2\sqrt{5}\\ \Rightarrow A=\sqrt{2}.\sqrt{5}=\sqrt{10}\)
a, = \(\frac{\sqrt{7}-5}{2}-\frac{2\left(3-\sqrt{7}\right)}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{5\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)
a) \(A=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\Rightarrow A^2=12-3\sqrt{7}+12+3\sqrt{7}-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}\Rightarrow A^2=24-2\sqrt{144-63}\Rightarrow A^2=24-18\Rightarrow A^2=6\Rightarrow A=\pm\sqrt{6}\)Ta có \(12-3\sqrt{7}< 12+3\sqrt{7}\Rightarrow\sqrt{12-3\sqrt{7}}< \sqrt{12+3\sqrt{7}}\Rightarrow\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}< 0\Rightarrow A< 0\)Vậy A=-6
b) \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\Rightarrow B^2=4+\sqrt{10+2\sqrt{5}}+4-\sqrt{10+2\sqrt{5}}+2\sqrt{\left(4+\sqrt{10+2\sqrt{5}}\right)\left(4-\sqrt{10+2\sqrt{5}}\right)}\Rightarrow B^2=8+2\sqrt{16-10-2\sqrt{5}}\Rightarrow B^2=8+2\sqrt{5-2\sqrt{5}+1}\Rightarrow B^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\Rightarrow B^2=8+2\sqrt{5}-2\Rightarrow B=\pm\sqrt{5+2\sqrt{5}+1}\Rightarrow B=\pm\left(\sqrt{5}+1\right)\)Ta có B>0⇒B=\(\sqrt{5}+1\)
c) \(C=\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\Rightarrow C^2=3-\sqrt{5}+3+\sqrt{5}+2\sqrt{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\Rightarrow C^2=6+2\sqrt{9-5}\Rightarrow C^2=6+4=10\Rightarrow C=\pm\sqrt{10}\)Ta có C>0⇒C=\(\sqrt{10}\)
a: \(A^2=12-2\sqrt{7}+12+2\sqrt{7}-2\cdot\sqrt{116}\)
\(\Leftrightarrow A^2=24-4\sqrt{29}\)
hay \(A=\sqrt{24-4\sqrt{29}}\)
c: \(C=\dfrac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)