K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

ý, nếu không được dùng cách kia thì làm cách này cho chắc đi :v

Ta có: \(2008A=\frac{2008\left(2008^{2008}+1\right)}{2008^{2009}+1}=\frac{2008^{2009}+2008}{2008^{2009}+1}=\frac{\left(2008^{2009}+1\right)+2007}{2008^{2009}+1}=1+\frac{2007}{2008^{2009}+1}\)

Lại có: \(2008B=\frac{2008\left(2008^{2007}+1\right)}{2008^{2008}+1}=\frac{2008^{2008}+2008}{2008^{2008}+1}=\frac{\left(2008^{2008}+1\right)+2007}{2008^{2008}+1}=1+\frac{2007}{2008^{2008}+1}\)

Vì 2008 < 2009 \(\Rightarrow2008^{2008}< 2008^{2009}\)\(\Rightarrow2008^{2008}+1< 2008^{2009}+1\)\(\Rightarrow\frac{2007}{2008^{2008}+1}>\frac{2007}{2008^{2009}+1}\)\(\Rightarrow1+\frac{2007}{2008^{2008}+1}>1+\frac{2007}{2008^{2009}+1}\)\(\Rightarrow2008B>2008A\)\(\Rightarrow B>A\)

20 tháng 12 2019

Vì A <1 , B < 1

Nên ta có: \(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2008^{2009}+1+2007}=\frac{2008^{2008}+2008}{2008^{2009}+2008}=\frac{2008\left(2008^{2007}+1\right)}{2008\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)

27 tháng 9 2015

Bài này hơi dài nên bạn bấn vào đây để xem lời giải Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

24 tháng 9 2016

a) Áp dụng \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\) (a;b;m \(\in\) N*)

Ta có:

\(A=\frac{2008^{2008}+1}{2008^{2009}+1}< \frac{2008^{2008}+1+2007}{2009^{2009}+1+2007}\)

\(A< \frac{2008^{2008}+2008}{2008^{2009}+2008}\)

\(A< \frac{2008.\left(2008^{2007}+1\right)}{2008.\left(2008^{2008}+1\right)}=\frac{2008^{2007}+1}{2008^{2008}+1}=B\)

=> A < B

b) Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a}{b}>\frac{a+m}{b+m}\) (a;b;m \(\in\) N*)

Ta có: 

\(N=\frac{100^{101}+1}{100^{100}+1}>\frac{100^{101}+1+99}{100^{100}+1+99}\)

\(N>\frac{100^{101}+100}{100^{100}+100}\)

\(N>\frac{100.\left(100^{100}+1\right)}{100.\left(100^{99}+1\right)}=\frac{100^{100}+1}{100^{99}+1}=M\)

=> M > N

Cảm ơn bạn nhiều 

15 tháng 3 2017

Bài 1:

Ta có: 200920=(20092)10=403608110 ;  2009200910=2009200910

Vì 403608110< 2009200910 => 200920< 2009200910

15 tháng 3 2017

Bài 1:

Ta có:\(2009^{20}\)=\(2009^{10}\).\(2009^{10}\)

         \(20092009^{10}\)=(\(\left(2009.10001\right)^{10}=2009^{10}.10001^{10}\)

Vì 2009<10001\(\Rightarrow2009^{20}< 20092009^{10}\)

21 tháng 7 2016

Trước hết ta tính tổng sau, với các số tự nhiên a, n đều lớn hơn 1.

\(S_n=\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^n}\)

Ta có: \(\left(a-1\right)S_n=aS_n-S_n\)

\(=\left(1+\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^{n-1}}\right)-\left(\frac{1}{a}+\frac{1}{a^2}+...+\frac{1}{a^{n-1}}+\frac{1}{a^n}\right)\)

\(=1-\frac{1}{a^n}< 1\Rightarrow S_n< \frac{1}{a-1}\left(1\right)\)

Áp dụng BĐT ( 1 ) cho \(a=2008\)và mọi n bằng 2 , 3 , ..... , 2007, ta được:

\(B=\frac{1}{2008}+\left(\frac{1}{2008}+\frac{1}{2008^2}\right)^2+...+\left(\frac{1}{2008}+\frac{1}{2008^2}+...+\frac{1}{2008^{2007}}\right)^{2007}< \frac{1}{2007}\)

\(+\left(\frac{1}{2007}\right)^2+...+\left(\frac{1}{2007}\right)^{2007}\left(2\right)\)

Lại áp dụng BĐT ( 1 ) cho \(a=2007\)và \(n=2007\), ta được:

\(\frac{1}{2007}+\frac{1}{2007^2}+...+\frac{1}{2007^{2007}}< \frac{1}{2006}=A\left(3\right)\)

Từ ( 2 ) và ( 3 ) => \(B< A.\)