Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a) (2x+1)2 = 25
(2x+1)2 = 52
=> 2x + 1 = 5 hoặc 2x+1 = -5
=> x=2 hoặc x=-3
b) 2x+2 - 2x = 96
<=> 2x . 22 - 2x = 96
<=> 2x(4-1) =96
<=>2x = 96 :3 = 32 = 25
<=> x = 5
c) (x-1)3 = 125
<=> (x-1)3 = 53
<=> x-1=5
<=>x= 5 +1 = 6
+) 69 chia hết cho 3 nên 69220119 chia hết cho 3
+) 220 = 1 (mod 3) => 22011969 = 1 (mod 3)
+) 119 = 2 (mod 3) => 1192 = 4 = 1 (mod 3) => (1192)34610 = 1 (mod 3) => 11969220 = 1 (mod 3)
=> A = 22011969 + 11969220 + 69220119 = 2 (mod 3)
=> A chia cho 3 dư 2 => A không thể chia hết cho 102. vì 102 chia hết cho 3
Bà1
*) 34x5y chia hết cho 4 khi 5y chia hết cho 4
khi đó y = 2 hoặc y = 6.
*) 34x5y chia hết cho 9 khi 3+4+x+5+y = 12+x+y chia hết cho 9
Với y=2 ta có 12+x+2=14+x chia hết cho 9 khi x = 4
ta có số 34452 chia hết cho 36.
Với y=6 ta có 12+x+6=18+x chia hết cho 9 khi x = 9
ta có số 34956 chia hết cho 36.
Kết luận: có hai số chia hết cho 36 là 34452 và 34956.
abcabc = abc.1001= abc.77.13 chia hết cho 13
=> số có dạng abcabc luôn chia hết cho 13
Ta có:abcabc=abc*77*13
=>abcabc chia hết cho 13
Vậy số có dạng abcabc luôn chia hết cho 13
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
https://cunghoctot.vn/Forum/Topic/1002821
bạn cứ vào táp này là có lời giải
Ta có nếu a không là bội của 7 thì a không chia hết cho 7 với mọi a là số nguyên lớn hơn 0
Mà a không chia hết cho 7 tức là a chia cho 7 dư 1, 2, 3, 4, 5 hoặc 6
Vì vậy a^6 chia cho 7 sẽ dư 1^6, 2^6, 3^6, 4^6, 5^6 hoặc 6^6
Vậy nếu 1^6 - 1, 2^6 - 1, 3^6 - 1, 4^6 - 1, 5^6 - 1, 6^6 - 1 chia hết cho 7 thì a^6 - 1 chia hết cho 7
Thật vậy :
- 1^6 - 1 = 1 - 1 = 0 chia hết cho 7
- 2^6 - 1 = 64 - 1 = 63 chia hết cho 7
- 3^6 - 1 = 729 - 1 = 728 chia hết cho 7
- 4^6 - 1 = 4096 - 1 = 4095 chia hết cho 7
- 5^6 - 1 = 15625 - 1 = 15624 chia hết cho 7
- 6^6 - 1 = 46656 - 1 = 46655 chia hết cho 7
Vậy a^6 - 1 chia hết cho 7 với mọi x thuộc số nguyên lớn hơn 0 không chia hết cho 7
Bài 1: Ta có: 8^9<9^9
7^9<9^9
.........................
1^9<9^9
=> 8^9+7^9+6^9+...+1^9<9^9+9^9+9^9+...+9^9=9^9.9=9^10
=>9^10>8^9+7^9
đi đâu mà gấp