Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: =>5(2x+6)=40
=>2x+6=8
=>2x=2
=>x=1
2: =>12-(x+3)=256:64=4
=>(x+3)=8
=>x=5
3: =>2x-1=3 hoặc 2x-1=-3
=>x=2 hoặc x=-1
4: \(\Leftrightarrow3^{x+2017}=3^{2015}\)
=>x+2017=2015
=>x=-2
Bài 1 :
a) 72x-1 = 343
=> 72x-1 = 73
=> 2x - 1 = 3 => 2x = 4 => x = 2
b) (7x - 11)3 = 25.32 + 200
=> (7x - 11)3 = 32.9 + 200
=> (7x - 11)3 = 488
xem kĩ lại đề này :vvv
c) 174 - (2x - 1)2 = 53
=> (2x - 1)2 = 174 - 53
=> (2x - 1)2 = 174 - 125 = 49
=> (2x - 1)2 = (\(\pm\)7)2
=> \(\orbr{\begin{cases}2x-1=7\\2x-1=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)
Mà x \(\in\)N nên x = 4( thỏa mãn điều kiện)
Bài 2 :
a) x5 = 32 => x5 = 25 => x = 2
b) (x + 2)3 = 27
=> (x + 2)3 = 33
=> x + 2 = 3 => x = 3 - 2 = 1
c) (x - 1)4 = 16
=> (x - 1)4 = 24
=> x - 1 = 2 => x = 3 ( vì đề bài cho x thuộc N nên thỏa mãn)
d) (x - 1)8 = (x - 1)6
=> (x - 1)8 - (x - 1)6 = 0
=> (x - 1)6 [(x - 1)2 - 1] = 0
=> \(\orbr{\begin{cases}\left(x-1\right)^6=0\\\left(x-1\right)^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\\left(x-1\right)^2=\left(\pm1\right)^2\end{cases}}\)
+) x - 1 = 1 => x = 2 ( tm)
+) x - 1 = -1 => x = 0 ( tm)
Vậy x = 1,x = 2,x = 0
\(\dfrac{2x}{15}+\dfrac{2x}{35}+\dfrac{2x}{63}+...+\dfrac{2x}{195}=\dfrac{4}{5}\\ x\cdot\left(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{195}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{13\cdot15}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{1}{3}-\dfrac{1}{15}\right)=\dfrac{4}{5}\\ x\cdot\dfrac{4}{15}=\dfrac{4}{5}\\ x=\dfrac{4}{5}:\dfrac{4}{15}\\ x=3\)
Gọi \(D=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)
\(2D=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\\ 2D+D=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\\ 3D=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\\ 3D=1-\dfrac{1}{64}< 1\\ \Rightarrow D=\dfrac{1-\dfrac{1}{64}}{3}< \dfrac{1}{3}\)
Vậy \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
\(A=1+5+5^2+..+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{51}\right)-\left(1+5+5^2+...+5^{50}\right)\)
\(4A=\left(5-5\right)+\left(5^2-5^2\right)+...+\left(5^{50}+5^{50}\right)+5^{51}-1\)
\(4A=0+0+...+0+5^{51}-1\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
\(x-1\in\left\{1;6;2;3;-1;-6;-2;-3\right\}\)
\(\Leftrightarrow x\in\left\{2;7;3;4;0;-5;-1;-2\right\}\)