Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(P=\left(\dfrac{x-2}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+2}{\left(x+1\right)^2}\right)\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)
\(=\dfrac{x^2-x-2-x^2-x+2}{\left(x-1\right)\left(x+1\right)^2}\cdot\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{4}\)
\(=\dfrac{-2x}{1}\cdot\dfrac{x-1}{4}=-\dfrac{x\left(x-1\right)}{2}\)
b: Để \(\dfrac{P-4}{5}=x\) thì P-4=5x
=>P=5x+4
\(\Leftrightarrow-\dfrac{x\left(x-1\right)}{2}=5x+4\)
=>-x2+x=10x+8
=>x2-x=-10x-8
=>x2+9x+8=0
=>x=-8(nhận) hoặc x=-1(loại)
Bài 1:
\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^2\left(x^2-1\right)\)
\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)
\(=x^6+27-27-27x^2-9x^4-x^6\)
\(=-9x^2\left(3-x^2\right)\)
Bài 5:
\(A=x^2-2x+1\)
\(=\left(x^2-2x+1\right)-2\)
\(=\left(x-1\right)^2-2\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)
Vậy Min A = -2
Để A = -2 thì \(x-1=0\Rightarrow x=1\)
b, \(B=4x^2+4x+5\)
\(=\left(4x^2+4x+1\right)+4\)
\(=\left(2x+1\right)^2+4\)
Với mọi giá trị của x ta có:
\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)
Vậy Min B = 4
Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
c, \(C=2x-x^2-4\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3
để C = -3 thì \(x-1=0\Rightarrow x=1\)
1)a)=>x2+y2+2xy-4(x2-y2-2xy)
=>x2+y2+2xy-4.x2+4y2+8xy
=>-3.x2+5y2+10xy
a, Với x ≠ 0,x ≠ ± 5 và x ≠ 5/2 thì
P = [x/(x^2 - 25) - (x - 5)/(x^2 + 5x)] : (2x - 5)/(x^2 + 5x) + x/(x - 5)
<=>P = [x/(x - 5)(x + 5) - (x - 5)/x(x+5)] . x(x + 5)/(2x - 5) + x/(x - 5)
=> P = [x^2 - (x - 5)^2]/x(x - 5)(x + 5) . x(x + 5)/(2x - 5) + x/(x - 5)
<=> P = (x - x + 5)(x + x - 5)/(x - 5)(2x - 5) + x/(x - 5)
<=> P = 5(2x - 5)/(x - 5)(2x - 5) + x/(x - 5)
<=> P = 5/(x - 5) + x/(x - 5)
<=> P = (5 + x)/(x - 5)
b, Với x ≠ 0,x ≠ ± 5 và x ≠ 5/2 (x ∈ Z) thì P ∈ Z <=> (5 + x)/(x - 5) ∈ Z
<=> (x - 5 + 10)/(x - 5) ∈ Z
<=> 1 + 10/(x - 5) ∈ Z
<=> 10/(x - 5) ∈ Z
<=> (x - 5) ∈ Ư(10)
<=> x - 5 = 10 <=> x = 15 (TM)
hoặc x - 5 = -10 <=> x = -5 (TM)
hoặc x - 5 = 5 <=> x = 10 (TM)
hoặc x - 5 = -5 <=> x = 0 (TM)
hoặc x - 5 = 2 <=> x = 7 (TM)
hoặc x - 5 = -2 <=> x = 3 (TM)
hoặc x - 5 = -1 <=> x = 4 (TM)
hoặc x - 5 = 1 <=> x = 6 (TM)
Vậy x ∈ {-5,0,3,4,6,7,10,15} thì P ∈ Z
a: ĐKXĐ: \(x\notin\left\{3;-3;-2\right\}\)
b: \(B=\dfrac{x+3-1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+2+1}{x+2}\)
\(=\dfrac{x+2}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+2}=\dfrac{1}{x-3}\)
c: Để B nguyên thì \(x-3\in\left\{1;-1\right\}\)
hay \(x\in\left\{4;2\right\}\)
\(a\text{)}.\:\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\\ =x^4+4x^2+4-\left(x^2-4\right)\left(x^2+4\right)\\ =x^4+4x^2+4-x^4+16\\ =4x^2+20\)
\(b\text{)}.\:\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\\ =\left(x+1+x-1\right)\left(x+1-x+1\right)-3\left(x^2-1\right)\\ =4x-3x^2+3\)