Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Cm:\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Gọi biểu thức trên là A, ta có:
3A = 1-2/3+3/3^2-...-100/3^99
3A + A = [1-2/3+3/3^2-...-100/3^99] + [1/3-2/3^2+3/3^3-...-100/3^100]
4A = 1 - 1/3 + 1/3^2 - ... - 1/3^99 - 100/3^99 [1]
Gọi B = 1-1/3 + 1/3^2 - ... - 1/3^99
3B = 3 - 1 + 1/3 - 1/3^2 -...-1/3^2012
3B + B = [3-1+1/3-1/3^2-...-1/3^2012] + [1-1/3 + 1/3^2 - ... - 1/3^99]
4B = 3 - 1/3^99
=> 4B < 3 => B < 1/4 [2]
Từ [1], [2] => 4A < B < 3/4 => A < 3/16 [đpcm]
MỎI TAY QUỚ
tk nha
Lúc đặt câu hỏi, bạn bấm vào góc trên cùng bên trái để gõ phép tính đẹp. Ý của bạn có phải là:
\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
\(A=\frac{2^{100}-1}{2^{100}}\)
Tham khảo nhé~
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)
\(\Rightarrow\)\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow\)\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow\)\(A=1-\frac{1}{2^{100}}\)
2) \(\left(x-1\right)^2=9\Rightarrow\left(x-1\right)^2=3^2\Rightarrow x-1=3\Rightarrow x=4\)
ĐÚNG RỒI NHÉ BN .BÀI 1 CHƯA LÀM ĐƯỢC À