Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số a chia 4 dư 3 ; chia 5 dư 4 ; chia 6 dư 5 nên ( a + 1 ) chia hết cho cả 4 ; 5 và 6
ta có BSCNN của 4.5 ,6 là : 60 => các BS của 60 có dạng 60 k
vì 200 < a < 400 nên k có thể là 4 , 5 , 6 khi đó a +1 = 240 , 300 , 360
nên a = 239 ,299 , 359
Từ giả thiết suy ra a+1 chia hết 4;5;6. Lập bảng bội chung 4;5;6 là làm đc
1. Gọi số tự nhiên cần tìm là \(\left(a\in N\right)\)và \(a-1\)là \(BC\)của 4 ; 5 ; 6 và \(a⋮7\).Ta có:
\(BCNN\left(4;5;6\right)=60.\)
\(BC\left(4;5;6\right)=\left\{0;60;120;180;240;300;360;420;....\right\}\)
\(\Rightarrow a-1\in\left\{0;60;120;180;240;300;360;420\right\}\)
\(\Leftrightarrow a\in\left\{1;61;121;181;241;301;361;....\right\}\)
Vì \(\Rightarrow301⋮7\Rightarrow\)số tự nhiên cần tìm là : 301