Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2
+ Nếu \(n⋮3\) Bài toán đã được c/m
+ Nếu n chia 3 dư 1 => \(n+2⋮3\)
+ Nếu n chia 3 dư 2 => \(n+1⋮3\)
Vậy trong 3 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 3
2/ \(a-10⋮24\) => a-10 đồng thời chia hết cho 3 và 8 vì 3 và 8 nguyên tố cùng nhau
\(\Rightarrow a-10=8k\Rightarrow a=8k+10⋮2\)
\(a=8k+10=8k+8+2=8\left(k+1\right)+2=2.4.\left(k+1\right)+2\)
\(2.4.\left(k+1\right)⋮4\) => a không chia hết cho 4
3/
a/ Gọi 3 số TN liên tiếp là n; n+1; n+2
\(\Rightarrow n+n+1+n+2=3n+3=3\left(n+1\right)⋮3\)
b/ Gọi 4 số TN liên tiếp là n; n+1; n+2; n+3
\(\Rightarrow n+n+1+n+2+n+3=4n+6=4n+4+2=4\left(n+1\right)+2\)
Ta có \(4\left(n+1\right)⋮4\) => tổng 4 số TN liên tiếp không chia hết cho 4
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858
d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430
a)Gọi 3 STN liên tiếp đó là a,a+1,a+2
Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3
b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3
Ta có: a+(a+1)+(a+2)+(a+3)=4a+6
4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4
A, CÓ
B,KHÔNG
C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,
(a+a+a)+ (1+2)
3a+3 chia hết cho 3
vi 3chia hết cho 3
vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3
(a+a+a+a)+(1+2+3)
4a+6 không chia hết cho 3 vì 4 không chia hết cho 3
vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
c,
Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
CHòi oi bố đăng nhiều thế con die
a, có
b, ko
c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)
d, tương tự c
d,
Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
Bài 1:
Ta có: a chia 36 dư 12
⇔a=36k+12
=4(9k+3)⋮4
Ta có: a=36k+12
=36k+9+3
Ta có: 36k+9=9(k+4)⋮9
3\(⋮̸\)9
Do đó: 36k+9+3\(⋮̸\)9(dấu hiệu chia hết của một tổng)
Bài 2:
a) Gọi ba số tự nhiên liên tiếp là a; a+1; a+2
Tổng của ba số tự nhiên liên tiếp là:
a+(a+1)+(a+2)
=a+a+1+a+2
=3a+3
=3(a+1)⋮3(đpcm)
b) Gọi bốn số tự nhiên liên tiếp là a; a+1; a+2; a+3
Tổng của bốn số tự nhiên liên tiếp là:
a+(a+1)+(a+2)+(a+3)
=a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2
Ta có: 4(a+1)⋮4
2\(⋮̸\)4
Do đó: 4(a+1)+2\(⋮̸\)4(dấu hiệu chia hết của một tổng)
hay Tổng của bốn số tự nhiên liên tiếp không chia hết cho 4(đpcm)
Bài 3:
Ta có: \(A=4+2^2+2^3+2^4+...+2^{20}\)
\(\Rightarrow2\cdot A=8+2^3+2^4+2^5+...+2^{21}\)
Do đó: \(2A-A=\left(8+2^3+2^4+2^5+...+2^{21}\right)-\left(4+2^2+2^3+2^4+...+2^{20}\right)\)
\(=8+2^3+2^4+2^5+...+2^{21}-4-2^2-2^3-2^4-...-2^{20}\)
\(\Rightarrow A=8+2^{21}-\left(4+2^2\right)\)
\(=8+2^{21}-4-2^2\)
\(=2^{21}+8-4-4=2^{21}\)
Vậy: A là một lũy thừa của 2(đpcm)
Bài 1:
Khi a : 36 dư 12 => a = 36k +12
=> a = 4(9k + 3) chia hết cho 4
Ta thấy 4 không chia hết cho 9
9k chia hết 9 =>(9k + 3) không chia hết cho 9 => a không chia hết cho 9
Bài 2:
a) Gọi 3 số tự nhiên liên tiếp là a;a+1;+2
ta có:a+(a+1)+(a+2)=3a+3=3.(a+1) chia hết cho 3
b) Làm tương tự như câu a
Bài 3:
A = 4 + 22 + 23 + 24 + ..... + 220
2A = 8 + 23 + 24 + .... + 220 + 221
Suy ra : 2A - A = 221 + 8 - ( 4 + 22 )
Vậy A = 221