Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)
\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)
\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)
\(< =>3072-107x=\frac{38x-684}{5}\)
\(< =>\left(3072-107x\right)5=38x-684\)
\(< =>15360-535x-38x-684=0\)
\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)
nghệm xấu thế
\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)
\(< =>993-33x-11x-415=0\)
\(< =>578=44x< =>x=\frac{289}{22}\)
a) Qui đồng rồi khử mẫu ta được:
3(3x+2)-(3x+1)=2x.6+5.2
<=> 9x+6-3x-1 = 12x+10
<=> 9x-3x-12x = 10-6+1
<=> -6x = 5
<=> x = -5/6
Vậy ....
b) ĐKXĐ: \(x\ne\pm2\)
Qui đồng rồi khử mẫu ta được:
(x+1)(x+2)+(x-1)(x-2) = 2(x2+2)
<=> x2+3x+2+x2-3x+2 = 2x2+4
<=> x2+x2-2x2+3x-3x = 4-2-2
<=> 0x = 0
<=> x vô số nghiệm
Vậy x vô số nghiệm với x khác 2 và x khác -2
c) \(\left(2x+3\right)\left(\frac{3x+7}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\) (ĐKXĐ:x khắc 2/7)
\(\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)-\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left[\left(2x+3\right)-\left(x-5\right)\right]=0\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}+1=0\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x+8}{2-7x}=-1\\x+8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x+8=-1\left(2-7x\right)\\x=0-8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x+8=-2+7x\\x=-8\end{cases}\Leftrightarrow\orbr{\begin{cases}-4x=-10\\x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}}\) (nhận)
Vậy ......
d) (x+1)2-4(x2-2x+1) = 0
<=> x2+2x+1-4x2+8x-4 = 0
<=> -3x2+10x-3 = 0
giải phương trình
b) \(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
<=> \(\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{1\left(x-2\right)}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
<=> x2+2x-x+2=2
<=> x2+x=2-2
<=> x2+x=0
<=>x(x+1)=0
<=>x=0 hoặc x+1=0
<=>x=0 hoặc x = -1
a) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
<=>\(\frac{1.x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
<=> x-3 =10x-15
<=> x-10x= -15+3
<=> -9x = -12
<=> x = \(\frac{-12}{-9}\)
<=> x = \(\frac{4}{3}\)
a) Ta có: \(\frac{3x-11}{11}-\frac{x}{3}=\frac{3x-5}{7}-\frac{5x-3}{9}\)
\(\Leftrightarrow\frac{63\left(3x-11\right)}{693}-\frac{231x}{693}-\frac{99\left(3x-5\right)}{693}+\frac{77\left(5x-3\right)}{693}=0\)
\(\Leftrightarrow189x-693-231x-297x+495+385x-231=0\)
\(\Leftrightarrow46x-429=0\)
\(\Leftrightarrow46x=429\)
hay \(x=\frac{429}{46}\)
Vậy: \(x=\frac{429}{46}\)
b) Ta có: \(\frac{9x-0,7}{4}-\frac{5x-1,5}{7}=\frac{7x-1,1}{6}-\frac{5\left(0,4-2x\right)}{5}\)
\(\Leftrightarrow\frac{9x-0,7}{4}-\frac{5x-1,5}{7}-\frac{7x-1,1}{6}+\frac{5\left(0,4-2x\right)}{5}=0\)
\(\Leftrightarrow105\left(9x-0,7\right)-60\left(5x-1,5\right)-70\left(7x-1,1\right)+420\left(0,4-2x\right)=0\)
\(\Leftrightarrow945x-\frac{147}{2}-300x+90-490x+77+168-840x=0\)
\(\Leftrightarrow-685x+261.5=0\)
\(\Leftrightarrow-685x=-261.5\)
hay \(x=\frac{523}{1370}\)
Vậy: \(x=\frac{523}{1370}\)
c) Ta có: \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x-1\right)}{7}-5\)
\(\Leftrightarrow\frac{14\left(5x-3\right)}{84}-\frac{21\left(7x-1\right)}{84}-\frac{24\left(2x-1\right)}{84}+\frac{420}{84}=0\)
\(\Leftrightarrow70x-42-147x+21-48x+24+420=0\)
\(\Leftrightarrow-125x+423=0\)
\(\Leftrightarrow-125x=-423\)
hay \(x=\frac{423}{125}\)
Vậy: \(x=\frac{423}{125}\)
d) Ta có: \(14\frac{1}{2}-\frac{2\left(x+3\right)}{5}=\frac{3x}{2}-\frac{2\left(x-7\right)}{3}\)
\(\Leftrightarrow\frac{435}{30}-\frac{12\left(x+3\right)}{30}-\frac{45x}{30}+\frac{20\left(x-7\right)}{30}=0\)
\(\Leftrightarrow435-12x-36-45x+20x-140=0\)
\(\Leftrightarrow-37x+259=0\)
\(\Leftrightarrow-37x=-259\)
hay \(x=7\)
Vậy: x=7
\(a,\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\) ĐKXĐ : \(x\ne0;x\ne\frac{3}{2}\)
\(\Leftrightarrow\frac{x}{x\left(2x-3\right)}-\frac{3}{x\left(2x-3\right)}=\frac{5\left(2x-3\right)}{x\left(2x-3\right)}\)
\(\Leftrightarrow x-3=10x-15\)
\(\Leftrightarrow x-10x=3-15\)
\(\Leftrightarrow-9x=-12\)
\(\Leftrightarrow x=\frac{-12}{-9}=\frac{4}{3}\)(TMĐKXĐ)
KL :....
\(b,\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\) ĐKXĐ : \(x\ne0;2\)
\(\Leftrightarrow\frac{x\left(x+2\right)}{x\left(x-2\right)}-\frac{x-2}{x\left(x-2\right)}=\frac{2}{x\left(x-2\right)}\)
\(\Leftrightarrow x^2+2x-x+2=2\)
\(\Leftrightarrow x^2+x=2-2\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
KL ::
Bài 1 :
a, Ta có : \(3x-1=2x+4\)
=> \(3x-2x=4+1\)
=> \(x=5\)
Vậy phương trình có tập nghiệm \(S=\left\{5\right\}\)
b, Ta có : \(5x-2=0\)
=> \(5x=2\)
=> \(x=\frac{2}{5}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{2}{5}\right\}\)
c, Ta có : \(7x-4=3x+12\)
=> \(7x-3x=12+4\)
=> \(4x=16\)
=> \(x=4\)
Vậy phương trình có tập nghiệm \(S=\left\{4\right\}\)
d, Ta có : \(\frac{x-1}{2}+\frac{3x+2}{4}=\frac{x-7}{12}\)
=> \(\frac{6\left(x-1\right)}{12}+\frac{3\left(3x+2\right)}{12}=\frac{x-7}{12}\)
=> \(6\left(x-1\right)+3\left(3x+2\right)=x-7\)
=> \(6x-6+9x+6=x-7\)
=> \(6x+9x-x=6-7-6\)
=> \(14x=-7\)
=> \(x=-\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{-\frac{1}{2}\right\}\)
Bài 2 :
a, ĐKXĐ : \(\left\{{}\begin{matrix}x^2-2x+1\ne0\\x-1\ne0\end{matrix}\right.\)
=> \(x-1\ne0\)
=> \(x\ne1\)
- Ta có : \(\left(\frac{x+1}{x^2-2x+1}+\frac{1}{x-1}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\left(\frac{x+1}{\left(x-1\right)^2}+\frac{x-1}{\left(x-1\right)^2}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\left(\frac{2x}{\left(x-1\right)^2}\right):\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\left(\frac{2x}{\left(x-1\right)^2}\right)\left(\frac{x-1}{x}\right)-\frac{2}{x-1}\)
= \(\frac{x}{x-1}-\frac{2}{x-1}\)
= \(\frac{x-2}{x-1}\)
cảm ơn