K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

\(3A=3+3^2+...3^{2003}\)

\(3A-A=\left(3-3\right)+\left(3^2-3^2\right)+...+3^{2003}-1\)

\(\Leftrightarrow\Leftrightarrow A=\frac{3^{2003}-1}{2}\)

 

25 tháng 10 2015

Bài 1 : 

A = 1 + 2 + 22 + ... + 211

A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )

A = 3 + 22(1+2) + ... + 210(1+2)

A = 1.3 + 22.3 + ... + 210.3

A = 3.(1+22+...+210) chia hết cho 3

Bài 2 :

2.52 + 3:710 - 54:33

= 2.25 + 3:1 - 54:27

= 50 + 3 - 2

= 49

Bài 3 :

a) ( 2x - 6 ) . 47 = 49

2x - 6 = 42 = 16

2x = 16

=> x = 8

b) ( 27x + 6 ) : 3 - 11 = 9

( 27x + 6 ) : 3 = 20

27x + 6 = 60

27x = 54

=> x = 2

c) 740 : ( x + 10 ) = 102 - 2.13

740 : ( x + 10 ) = 74

x + 10 = 10

=> x = 0

d) ( 15 - 6x ) . 35 = 36

15 - 6x = 3

6x = 12

=> x = 2

Bài 4 :

Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11 

25 tháng 10 2015

Bài 1 : 

A = 1 + 2 + 22 + ... + 211

A = ( 1 + 2 ) + ( 22 + 23 ) + ... + ( 210 + 211 )

A = 3 + 22(1+2) + ... + 210(1+2)

A = 1.3 + 22.3 + ... + 210.3A = 3.(1+22+...+210) chia hết cho 3

Bài 2 :

2.52 + 3:710 - 54:33

= 2.25 + 3:1 - 54:27

= 50 + 3 - 2= 49

Bài 3 :

a) ( 2x - 6 ) . 47 = 49

2x - 6 = 42 = 16

2x = 16

=> x = 8

b) ( 27x + 6 ) : 3 - 11 = 9

( 27x + 6 ) : 3 = 20

27x + 6 = 60

27x = 54

=> x = 2

c) 740 : ( x + 10 ) = 102 - 2.13

740 : ( x + 10 ) = 74

x + 10 = 10

=> x = 0

d) ( 15 - 6x ) . 35 = 36

15 - 6x = 3

6x = 12

=> x = 2

Bài 4 :

Ta có : ab + ba = ( 10a + b ) + ( 10b + a ) = ( 10a + a ) + ( 10b + b ) = 11a + 11a = 11.(a+b) chia hết cho 11 

14 tháng 11 2018

1)A=987

21 tháng 5 2015

Cậu search mạng chứ gì

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

21 tháng 5 2015

Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z) 
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ 
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8. 
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3. 
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24. 
Vậy đccm. 

Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d). 
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c. 

Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có: 
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99) 
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3) 
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96) 
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20. 
Vậy x chia hết cho 20 (đccm) 
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100 
=> 3x + x = 1 - 3^100 
=> 4x = (1 - 3^100) 
=> x = (1 - 3^100)/4 
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên 
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4 
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm) 

Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1. 
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1. 
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2. 
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3

28 tháng 10 2020

a)X= 40-15=25

b)2(x+35)=215-15

2(x+35)=200

x+35=100

X=65

c)(2x-3)^3=5^3

2x-3=5

2x=8

x=4

16 tháng 3 2020

a , \(( -2004 - 2004 - 2004- 2004 ) . (-24) = ( 0 - 2004 - 2004 ) . (-24) = ( -2004 - 2004 ) . ( -24) = 0 . ( -24 ) = 0\)

b, Chia bài làm hai vế 

Ta có : \(A = 1 + 2 + ..... + 97 + 98 \)

Dãy trên có số số hạng là :

\((98 -1 ) : 1 + 1 = 98\)

Tổng dãy A là :

\((98 + 1) . 98 : 2 = 4851\)

Ta lại có : \(B = -3 + (-4) + .... + (-99) + (-100)\)

Dãy trên có số số hạng là :

\([(-100) - 1] : 1 + 1 = (-100) \)

Tổng dãy B là :

\([ ( -100) + 1 ] . (-100) : 2 = 4950\)

Tổng dãy trên là :

\(4851 + 4950 =9801 \)

13 tháng 12 2020

\(3B=3^2+3^3+....+3^{2021}\Rightarrow3B-B=2B=3^{2021}-3\)

2B+3=3^2021=3^n nên: n=2021

\(\text{với: }n\ge7\text{ thì: }2^n\text{ chia hết cho }128\text{ h ta cm:}\)

4+2^2+....+2^6 chia hết cho 128

điều này là hiển nhiên

ý c: ghép cặp có nhiều r

13 tháng 12 2020

Thank you so much! 

Cảm ơn