Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho dù 2016 số có là số nào thì cũng đều có dạng \(n;n+1;n+2;...;n+2016\)
Và ta có \(n+2016-n=2015⋮2015\)
Như vậy trong 2016 số tự nhiên liên tiếp bất kì luôn tồn tại 2 số có hiệu chia hết cho 2015
Ta biết rằng số nguyên tố lớn hơn 3 thì có 1 trong 2 dạng sau: \(6k+1;6k-1\)
Xét số nguyên tố có dạng: \(6k+1\)
Nếu k chẵn thì \(6k+1\)chia cho 12 dư 1.
Nếu k lẻ thì \(6k+1\)chia cho 12 dư 7.
Xét số nguyên tố dạng \(6k-1\)
Nếu k chẵn thì \(6k-1\)chia cho 12 dư 11.
Nếu k lẻ thì \(6k-1\)chia cho 12 dư 5.
\(\Rightarrow\)Số nguyên tố khi chia cho 12 thì có các số dư như sau: \(1;2;3;5;7;11\)
Từ đây ta thấy rằng trong 7 số nguyên tố bất kỳ sẽ có ít nhất 2 số có cùng số dư khi chi cho 12. Nên hiệu hai số đó sẽ chia hết cho 12.
Bấm vào đây bạn nhé
https://olm.vn/hoi-dap/question/110524.html